Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 13.4

Ex 13.4, 1

Ex 13.4, 2

Ex 13.4, 3 Important

Ex 13.4, 4 (i)

Ex 13.4, 4 (ii)

Ex 13.4, 4 (iii) Important

Ex 13.4, 5 (i) Important

Ex 13.4, 5 (ii)

Ex 13.4, 6 Important

Ex 13.4, 7 Important

Ex 13.4, 8 You are here

Ex 13.4, 9

Ex 13.4, 10

Ex 13.4, 11 Important

Ex 13.4, 12 Important

Ex 13.4, 13 Important Deleted for CBSE Board 2023 Exams

Ex 13.4, 14

Ex 13.4, 15

Ex 13.4, 16 (MCQ)

Ex 13.4, 17 (MCQ) Important

Chapter 13 Class 12 Probability

Serial order wise

Last updated at March 16, 2023 by Teachoo

Ex 13.4, 8 A random variable X has the following probability distribution: Determine (i) k Since X is a random variable , its Sum of Probabilities is equal to 1 07𝑃(𝑋) = 1 P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6) + P(X=7) = 1 0 + k + 2k + 2k + 3k + k2 + 2k2 + 7k2 + k = 1 9k + 10k2 = 1 10k2 + 9k – 1 = 0 10k2 + 10k – k – 1 = 0 10k2 + 10k – k – 1 = 0 10k(k + 1) – 1(k + 1) = 0 (10k – 1)(k + 1) = 0 So, k = 110 & k = –1 But k is probability, So, it cannot be negative, Hence, k = 𝟏𝟏𝟎 Ex 13.4, 8 A random variable X has the following probability distribution: Determine (ii) P(X < 3) P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0 + k + 2k = 3k = 3 × 110 = 𝟑𝟏𝟎 Ex 13.4, 8 A random variable X has the following probability distribution: Determine (iii) P(X > 6) P(X > 6) = P(X = 7) = 7k2 + k = 7 1102+ 110 = 7 × 1100+ 110 = 7100+ 110 = 𝟏𝟕𝟏𝟎𝟎 Ex 13.4, 8 A random variable X has the following probability distribution: Determine (iv) P(0 < X < 3) P(0 < X < 3) = P(X = 1) + P(X = 2) = k + 2k = 3k = 3 × 110 = 𝟑𝟏𝟎