Ex 13.1, 11 - A fair die is rolled. E = {1, 3, 5}, F = {2, 3} - Ex 13.1

part 2 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability
part 3 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability

part 4 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability

part 5 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability part 6 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability part 7 - Ex 13.1, 11 - Ex 13.1 - Serial order wise - Chapter 13 Class 12 Probability

Share on WhatsApp

Transcript

Ex 13.1, 11 A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find (i) P(E|F) and P (F|E)A fair die is rolled S = {1, 2, 3, 4, 5, 6} Event E E = {1, 3, 5} P(E) = 3/6 = 1/2 Event F F = {2, 3} P(F) = 2/6 = 1/3 Event G G = {2, 3, 4, 5} P(G) = 4/6 = 2/3 We need to find P(E|F) and P(F|E) Now, "E"∩"F" = {3} P("E"∩"F") = 1/6 Now, P(E|F) = (𝑃(𝐸 ∩ 𝐹))/(𝑃(𝐹)) = (1/6)/(1/3) = 𝟏/𝟐 P(F|E) = (𝑃(𝐹 ∩ 𝐸))/(𝑃(𝐸)) = (1/6)/(1/2) = 𝟏/𝟑 Ex 13.1, 11 A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find (iii) P((E ∪ F)|G) and P((E ∩ F)|G)P ( ("E"∪"F) | G ") Let "E"∪"F" = A So, A = {1, 2, 3, 5} P(A) = 4/6 Now, "A"∩"G" = {2, 3, 5} So, P("A"∩"G") = 3/6 Thus, P("A|G") = (𝑃(𝐴 ∩ 𝐺))/(𝑃(𝐺)) = (3/6)/(4/6) = 𝟑/𝟒 Therefore, P ( ("E"∪"F) | G ") = 𝟑/𝟒 Similarly, let’s do for P ( ("E"∩"F) | G" ) P( ("E"∩"F) | G ") Let "E"∩"F" = B So, B = {3} P("B") = 1/6 Now, "B"∩"G" = {3} So, P("B"∩"G") = 1/6 Thus, P("B|G") = (𝑃(𝐵 ∩ 𝐺))/(𝑃(𝐺)) = (1/6)/(4/6) = 𝟏/𝟒 Therefore, P ( ("E"∩ "F) | G ") = 𝟏/𝟒

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo