




Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Whether binary commutative/associative or not
Ex 1.4, 12 Deleted for CBSE Board 2023 Exams
Example 34 Deleted for CBSE Board 2023 Exams
Example 35 Deleted for CBSE Board 2023 Exams
Ex 1.4, 4 Deleted for CBSE Board 2023 Exams
Ex 1.4, 5 Deleted for CBSE Board 2023 Exams
Associative Binary Operations
Ex 1.4, 13 (MCQ) Important Deleted for CBSE Board 2023 Exams
Example 36 Deleted for CBSE Board 2023 Exams
Example 37 Important Deleted for CBSE Board 2023 Exams
Ex 1.4, 2 (i) Important Deleted for CBSE Board 2023 Exams
Ex 1.4, 9 (i) Deleted for CBSE Board 2023 Exams
Example 45 (a) Deleted for CBSE Board 2023 Exams
Ex 1.4, 6 Important Deleted for CBSE Board 2023 Exams You are here
Ex 1.4, 8 Deleted for CBSE Board 2023 Exams
Misc 12 Deleted for CBSE Board 2023 Exams
Whether binary commutative/associative or not
Last updated at Aug. 11, 2021 by Teachoo
Ex 1.4, 6 Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find 5 * 7, 20 * 16 5 * 7 = L.C.M. of 5 and 7 = 35 20 * 16 = L.C.M of 20 and 16 = 80 Ex 1.4, 6 Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find (ii) Is * commutative? Check commutative * is commutative if a * b = b * a Since a * b = b * a ∀ a, b ∈ N * is commutative a * b = LCM of a & b b * a = LCM of b & a Ex 1.4, 6 (iii) Is * associative? Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c = a * (b * c) ∀ a, b ∈ N * is associative (a * b)* c = (LCM of a & b) * c = LCM of (LCM of a & b) & c = LCM of a, b & c a * (b * c) = a * (LCM of b & c) = LCM of a & (LCM of b & c) = LCM of a, b & c Ex 1.4, 6 Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find (iv) Find the identity of * in N e is the identity of * if a * e = e * a = a i.e. LCM of a & e = LCM of e & a = a Let e = 1 L.C.M. of a & 1 = a L.C.M. of 1 & a = a ∴ a * 1 = 1 * a = a for all a ∈ N Thus, 1 is the identity of * in N. Ex 1.4, 6 Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find (v) Which elements of N are invertible for the operation * An element a in N is invertible if, there is an element b in N such that , a * b = e = b * a Here, b is the inverse of a Here, e = 1 So, a * b = 1 = b * a i.e. LCM of a & b = 1 = LCM of b & a LCM of two numbers are 1 if both numbers are 1 So, a = b = 1 Hence, 1 is the only invertible element in N for operation *