Ex 11.2, 12 - Find shortest distance between lines - Ex 11.2 - Ex 11.2

part 2 - Ex 11.2, 12 - Ex 11.2 - Serial order wise - Chapter 11 Class 12 Three Dimensional Geometry
part 3 - Ex 11.2, 12 - Ex 11.2 - Serial order wise - Chapter 11 Class 12 Three Dimensional Geometry

Share on WhatsApp

Transcript

Ex 11.2, 12 Find the shortest distance between the lines π‘Ÿ βƒ— = (𝑖 Μ‚ + 2𝑗 Μ‚ + π‘˜ Μ‚) + πœ† (𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) and π‘Ÿ βƒ— = (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ βˆ’ π‘˜ Μ‚) + πœ‡ (2𝑖 Μ‚ + 𝑗 Μ‚ + 2π‘˜ Μ‚) Shortest distance between the lines with vector equations π‘Ÿ βƒ— = (π‘Ž1) βƒ— + πœ† (𝑏1) βƒ—and π‘Ÿ βƒ— = (π‘Ž2) βƒ— + πœ‡(𝑏2) βƒ— is |(((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— ).((π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ— ))/|(π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— | | Given, 𝒓 βƒ— = (π’Š Μ‚ + 2𝒋 Μ‚ + π’Œ Μ‚) + πœ†(π’Š Μ‚ βˆ’ 𝒋 Μ‚ + π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž1) βƒ— + πœ† (𝑏1) βƒ—, (π‘Ž1) βƒ— = 1𝑖 Μ‚ + 2𝑗 Μ‚ + 1π‘˜ Μ‚ & (𝑏1) βƒ— = 1𝑖 Μ‚ – 1𝑗 Μ‚ + 1π‘˜ Μ‚ 𝒓 βƒ— = (2π’Š Μ‚ βˆ’ 𝒋 Μ‚ βˆ’ π’Œ Μ‚) + 𝝁 (2π’Š Μ‚ + 𝒋 Μ‚ + 2π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž2) βƒ— + πœ‡(𝑏2) βƒ— , (π‘Ž2) βƒ— = 2𝑖 Μ‚ – 1𝑗 Μ‚ βˆ’ 1π‘˜ Μ‚ & (𝑏2) βƒ— = 2𝑖 Μ‚ + 1𝑗 Μ‚ + 2π‘˜ Μ‚ Now, (π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ— = (2𝑖 Μ‚ βˆ’ 1𝑗 Μ‚ βˆ’ 1π‘˜ Μ‚) βˆ’ (1𝑖 Μ‚ + 2𝑗 Μ‚ + 1π‘˜ Μ‚) = (2 βˆ’ 1) 𝑖 Μ‚ + (βˆ’1βˆ’ 2)𝑗 Μ‚ + (βˆ’1 βˆ’ 1) π‘˜ Μ‚ = 1π’Š Μ‚ βˆ’ 3𝒋 Μ‚ βˆ’ 2π’Œ Μ‚ (π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— = |β– 8(𝑖 Μ‚&𝑗 Μ‚&π‘˜ Μ‚@1& βˆ’1&1@2&1&2)| = 𝑖 Μ‚ [(βˆ’1Γ— 2)βˆ’(1Γ—1)] βˆ’ 𝑗 Μ‚ [(1Γ—2)βˆ’(2Γ—1)] + π‘˜ Μ‚ [(1Γ—1)βˆ’(2Γ—βˆ’1)] = 𝑖 Μ‚ [βˆ’2βˆ’1] βˆ’ 𝑗 Μ‚ [2βˆ’2] + π‘˜ Μ‚ [1+2] = βˆ’3π’Š Μ‚ βˆ’ 0𝒋 Μ‚ + 3π’Œ Μ‚ Magnitude of ((𝑏1) βƒ— Γ— (𝑏2) βƒ—) = √((βˆ’3)2+(0)2+32) |(π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— | = √(9+0+9) = √18 = √(9 Γ— 2) = 3√𝟐 Also, ((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ—) . ((π’‚πŸ) βƒ— – (π’‚πŸ) βƒ—) = (βˆ’ 3𝑖 Μ‚βˆ’0𝑗 Μ‚+3π‘˜ Μ‚).(1𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 2π‘˜ Μ‚) = (βˆ’3Γ—1)".(" 0Γ—βˆ’"3)" + (3 Γ— βˆ’2) = βˆ’3 βˆ’ 0 βˆ’ 6 = βˆ’9 So, Shortest distance = |(((𝑏_1 ) βƒ— Γ— (𝑏_2 ) βƒ— ).((π‘Ž_2 ) βƒ— βˆ’ (π‘Ž_1 ) βƒ— ))/|(𝑏_1 ) βƒ— Γ— (𝑏_2 ) βƒ— | | = |( βˆ’πŸ—)/(πŸ‘βˆšπŸ)| = 3/√2 = 3/√2 Γ— √2/√2 = (πŸ‘βˆšπŸ)/𝟐 Therefore, shortest distance between the given two lines is (3√2)/2.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo