Slide36.JPG

Slide37.JPG

 

 


Transcript

Ex 3.3, 10 Express the following matrices as the sum of a symmetric and a skew symmetric matrix: (i) [■8(3&5@1&−1)] Let A = [■8(3&5@1&−1)] A’ = [■8(3&1@5&−1)] 𝟏/𝟐 (A + A’) = 1/2 ([■8(3&5@1&−1)]+ [■8(3&1@5&−1)]) = 1/2 [■8(6&6@6&−2)] = [■8(𝟑&𝟑@𝟑&−𝟏)] 𝟏/𝟐 (A – A’) = 1/2 ([■8(3&5@1&−1)]" − " [■8(3&1@5&−1)]) = 1/2 [■8(0&4@−4&0)] = [■8(𝟎&𝟐@−𝟐&𝟎)] Let, P = 𝟏/𝟐 (A + A’) = [■8(3&3@3&−1)] P’ = [■8(3&3@3&−1)] = P Since P‘ = P P is a symmetric matrix. Let, Q = 𝟏/𝟐 (A − A’) = [■8(0&2@−2&0)] Q’ = [■8(0&−2@2&0)] = – [■8(0&2@−2&0)]= −Q Since Q’ = − Q Q is a skew symmetric matrix. Now, P + Q = 1/2 (A + A’) + 1/2 (A − A’) = A Thus, A is a sum of symmetric & skew symmetric matrix

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.