Ex 3.3, 6
If (i) A = [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )] , then verify that A’A = I
Solving L.H.S.
A’A
Given
A = [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )]
So, A’ = [■8(𝐜𝐨𝐬𝜶&−𝐬𝐢𝐧𝜶@𝐬𝐢𝐧𝜶&𝐜𝐨𝐬𝜶 )]
A’ A = [■8(cos𝛼&〖−sin〗𝛼@sin𝛼&cos𝛼 )] [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )]
= [■8(cos𝛼.cos𝛼+〖(−sin〗〖𝛼)〖(−sin〗〖𝛼)〗 〗&cos𝛼 〖.sin〗𝛼+〖(−sin〗〖𝛼)cos𝛼 〗@sin𝛼. cos𝛼+cos〖𝛼 〖(−sin〗〖𝛼)〗 〗&sin𝛼.sin𝛼+cos〖𝛼 .cos𝛼 〗 )]
= [■8(cos2𝛼+sin2𝛼&sin〖𝛼 cos〖𝛼−sin〖𝛼 cos𝛼 〗 〗 〗@sin𝛼 cos〖𝛼−sin𝛼 〗 cos𝛼&sin2𝛼+cos2 a)]
= [■8(𝐜𝐨𝐬𝟐𝜶+𝐬𝐢𝐧𝟐 𝜶&𝟎@𝟎&𝐬𝐢𝐧𝟐𝜶+𝐜𝐨𝐬𝟐 𝒂)]
Using sin2 θ + cos2 θ = 1
= [■8(1&0@0&1)]
= I
= R.H.S
Hence L.H.S = R.H.S
Hence Proved
Made by
Davneet Singh
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo
Hi, it looks like you're using AdBlock :(
Displaying ads are our only source of revenue. To help Teachoo create more content, and view the ad-free version of Teachooo... please purchase Teachoo Black subscription.
Please login to view more pages. It's free :)
Teachoo gives you a better experience when you're logged in. Please login :)
Solve all your doubts with Teachoo Black!
Teachoo answers all your questions if you are a Black user!