Ex 3.3, 3 - If A' = [3 4 -1 2 0 1], then verify (i) (A + B)' - Ex 3.3

part 2 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices
part 3 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices
part 4 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices

  part 5 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices part 6 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices part 7 - Ex 3.3, 3 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices

 

 

 

Share on WhatsApp

Transcript

Ex 3.3,3 If A’ = [■8(3&4@−1&2@0&1)] and B =[■8(−1&2&1@1&2&3)] , then verify that (i) (A + B)’ = A’ + B’ Solving L.H.S (A + B)’ First finding A + B Given A’ = [■8(3&4@−1&2@0&1)] A = (A’)’ = [■8(3&4@−1&2@0&1)]^′ = [■8(3&−1&0@4&2&1)] Now, A + B = [■8(𝟑&−𝟏&𝟎@𝟒&𝟐&𝟏)] + [■8(−𝟏&𝟐&𝟏@𝟏&𝟐&𝟑)] = [■8(3+(−1)&−1+2&0+1@4+1&2+2&1+3)] = [■8(𝟐&𝟏&𝟏@𝟓&𝟒&𝟒)] So, (A + B)’ = [■8(2&5@1&4@1&4)] Solving R.H.S. (A’ + B’) Given A’ = [■8(𝟑&𝟒@−𝟏&𝟐@𝟎&𝟏)] Also B = [■8(−1&2&1@1&2&3)] B’ = [■8(−𝟏&𝟏@𝟐&𝟐@𝟏&𝟑)] A’ + B’ = [■8(3&4@−1&2@0&1)] + [■8(−1&1@2&2@1&3)] = [■8(3+(−1)&4+1@−1+2&2+2@0+1&1+3)] = [■8(𝟐&𝟓@𝟏&𝟒@𝟏&𝟒)] = L.H.S Hence, L.H.S = R.H.S Hence proved Ex 3.3, 3 If A’ = [■8(3&4@−1&2@0&1)] and B =[■8(−1&2&1@1&2&3)] , then verify that (ii) (A – B)’ = A’ – B’ Solving L.H.S (A – B)’ First finding A – B A – B = [■8(3&−1&0@4&2&1)] – [■8(−1&2&1@1&2&3)] = [■8(3−(−1)&−1−2&0−1@4−1&2−2&1−3)] = [■8(𝟑+𝟏&−𝟑&−𝟏@𝟑&𝟎&−𝟐)] = [■8(4&−3&−1@3&0&−2)] (A – B)’ = [■8(𝟒&𝟑@−𝟑&𝟎@−𝟏&−𝟐)] Solving R.H.S A’ – B’ Given A’ = [■8(3&4@−1&2@0&1)] A’ – B’ = [■8(3&4@−1&2@0&1)] – [■8(−1&1@2&2@1&3)] = [■8(3−(−1)&4−1@−1−2&2−2@0−1&1−3)] = [■8(3+1&3@−3&0@−1&−2)] = [■8(𝟒&𝟑@−𝟑&𝟎@−𝟏&−𝟐)] = L.H.S Hence, L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo