Ex 3.3, 2 - Verify (A + B)' = A' + B' if A = [-1 2 3 5 7 9 - Ex 3.3

part 2 - Ex 3.3, 2 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices
part 3 - Ex 3.3, 2 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices
part 4 - Ex 3.3, 2 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices
part 5 - Ex 3.3, 2 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices part 6 - Ex 3.3, 2 - Ex 3.3 - Serial order wise - Chapter 3 Class 12 Matrices

Share on WhatsApp

Transcript

Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (i) (A + B)’ = A’ + B’ Solving L.H.S (A + B)’ First we will calculate A + B A + B = [■8(−1&2&3@5&7&9@−2&1&1)] + [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1+(−4)&2+1&3+(−5)@5+1&7+2&9+0@−2+1&1+3&1+1)] = [■8(−5&3&−2@6&9&9@−1&4&2)] Thus, A + B = [■8(−5&3&−2@6&9&9@−1&4&2)] (A + B)’ = [■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] Solving R.H.S A’ + B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ =[■8(−1&5&−2@2&7&1@3&9&1)] B = [■8(−4&1&−5@1&2&0@1&3&1)] B’ = [■8(−4&1&1@1&2&3@−5&0&1)] Now, A’ + B’ = [■8(−1&5&−2@2&7&1@3&9&1)]+[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1+(−4)&5+1&−2+1@2+1&7+2&1+3@3+(−5)&9+0&1+1)] =[■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] = L.H.S Hence Proved Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (ii) (A – B)’ = A’ – B’ Solving L.H.S (A – B)’ First we will calculate A – B A – B = [■8(−1&2&3@5&7&9@−2&1&1)] – [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1−(−4)&2−1&3−(−5)@5−1&7−2&9−0@−2−1&1−3&1−1)] = [■8(−1+4&1&3+5@4&5&9@−3&−2&0)] = [■8(𝟑&𝟏&𝟖@𝟒&𝟓&𝟗@−𝟑&−𝟐&𝟎)] Thus, A – B = [■8(3&1&8@4&5&9@−3&−2&0)] Now, (A – B)’ = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] Solving R.H.S A’ – B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ = [■8(−1&5&−2@2&7&1@3&9&1)] Now, A’ – B’ = [■8(−1&5&−2@2&7&1@3&9&1)]−[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1−(−4)&5−1&−2−1@2−1&7−2&1−3@3−(−5)&9−0&1−1)] = [■8(−1+4&4&−3@1&5&−2@3+5&9&0)] = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] = L.H.S Hence L.H.S = R.H.S Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo