Slide38.JPG

Slide39.JPG
Slide40.JPG
Slide41.JPG

Go Ad-free

Transcript

Ex 2.2, 15 Find value of : tan−1 √3 – cot−1 (−√3) Finding tan−1 √𝟑 Let y = tan−1 √3 tan y = √3 tan y = tan (𝝅/𝟑) ∴ y = 𝝅/𝟑 Since range of tan-1 is ((−π)/2,π/2) Hence, Principal Value is 𝝅/𝟑 ∴ tan−1 √3 = π/3 Finding cot−1 (−√𝟑) Let x = cot−1 (√3) x = 𝜋 − cot−1 (√3) x = 𝜋 − 𝛑/𝟔 x = 𝟓𝛑/𝟔 We know that cot−1 (−x) = 𝜋 − cot −1 x Since cot 𝜋/6 = √3 𝜋/3 = cot−1 (√3) Since range of cot−1 is (0, π) Hence, Principal Value is 𝟓𝛑/𝟔 ∴ cot−1 (−√3) = 5π/6 Hence, tan−1 √3 = π/3 & cot−1 (−√3) = 5π/6 Now calculating tan−1 √𝟑 – cot−1 (−√𝟑) = π/3 − 5π/6 = (2𝜋 − 5π)/6 = (−3π)/6 = (−𝝅)/𝟐 Hence, option (B) is correct

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.