Derivatives by formula - sin & cos

Chapter 13 Class 11 Limits and Derivatives
Concept wise    This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)

### Transcript

Ex 13.2, 10 Find the derivative of cos x from first principle. Let f (x) = cos x We need to find f’(x) We know that f’(x) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓⁡〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = cos x So, f (x + h) = cos (x + h) Putting values, f’ (x) = lim┬(h→0)⁡〖(𝒄𝒐𝒔 (𝒙 + 𝒉) −〖 𝒄𝒐𝒔〗⁡𝒙)/h〗 Using cos A – cos B = – 2 sin ((𝐴 + 𝐵)/2) sin ((𝐴 − 𝐵)/2) = lim┬(h→0)⁡〖(−𝟐 𝒔𝒊𝒏((𝒙 + (𝒙 + 𝒉))/𝟐) . 𝒔𝒊𝒏(((𝒙 + 𝒉) − 𝒙)/𝟐))/h〗 = lim┬(h→0)⁡〖(−2 𝑠𝑖𝑛((2𝑥 + ℎ)/2) . 𝑠𝑖𝑛(ℎ/2))/h〗 = lim┬(h→0)⁡〖−2 sin⁡((2𝑥 + ℎ)/2).〖sin 〗⁡〖ℎ/2〗/ℎ〗 = lim┬(h→0)⁡〖−sin⁡((2𝑥 + ℎ)/2).〖sin 〗⁡〖ℎ/2〗/(ℎ/2)〗 Using (𝑙𝑖𝑚)┬(𝑥→0)⁡〖 𝑠𝑖𝑛⁡𝑥/𝑥〗=1 Replacing x by ℎ/2 ⇒ (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛⁡〖 ℎ/2〗/(( ℎ)/2) = 1 = lim┬(h→0)⁡〖−sin⁡((2𝑥 + ℎ)/2).(𝐥𝐢𝐦)┬(𝐡→𝟎) 〖𝐬𝐢𝐧 〗⁡〖𝒉/𝟐〗/(𝒉/𝟐)〗 = lim┬(h→0)⁡〖−sin⁡((2𝑥 + ℎ)/2).𝟏〗 = lim┬(h→0)⁡〖−sin⁡((2𝑥 + ℎ)/2) 〗 Putting h = 0 = −sin⁡((2𝑥 +0)/2) = −sin⁡(2𝑥/2) = – sin x ∴ f’(x) = –sin x 