Example 20 - Find value of tan pi/8 - Chapter 3 Class 11 - Examples

part 2 - Example 20 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 3 - Example 20 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 4 - Example 20 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 5 - Example 20 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions

Share on WhatsApp

Transcript

Example 20 find the value of tan πœ‹/8. tan 𝝅/πŸ– Putting Ο€ = 180Β° = tan (180Β°)/8 = tan (πŸ’πŸ“Β°)/𝟐 We find tan (45Β°)/2 using tan 2x formula tan 2x = (2 tan⁑π‘₯)/(1 βˆ’π‘‘π‘Žπ‘›2π‘₯) Putting x = (πŸ’πŸ“Β°)/𝟐 tan ("2 Γ— " (45Β°)/2) = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) tan 45Β° = (𝟐 𝒕𝒂𝒏⁑〖 (πŸ’πŸ“Β°)/πŸγ€—)/(𝟏 βˆ’π’•π’‚π’πŸ (πŸ’πŸ“Β°)/𝟐) tan 45Β° = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 – tan2 (45Β°)/2 = 2tan (45Β°)/2 Let tan (πŸ’πŸ“Β°)/𝟐 = x So, our equation becomes 1 – x2 = 2x 0 = 2x + x2 – 1 x2 + 2x – 1 = 0 The above equation is of the form ax2 + bx + c = 0 where a = 1, b = 2, c = βˆ’1 Solution are x = (βˆ’ 𝑏 Β± √(𝑏2 βˆ’4π‘Žπ‘) )/2π‘Ž = (βˆ’ 2 Β± √((βˆ’2)2 βˆ’ 4 Γ— 1 Γ— (βˆ’1)) )/(2 Γ— 1) = (βˆ’2 Β± √(4 + 4))/2 = (βˆ’πŸ Β± βˆšπŸ–)/𝟐 = (βˆ’2 Β± √(2 Γ— 2 Γ— 2))/2 = (βˆ’2 Β± 2√2)/2 = (2 ( βˆ’1 ±√2 ))/2 = –1 Β± √𝟐 Thus, x = –1 Β± √2 tan (πŸ’πŸ“Β°)/𝟐 = –1 Β± √𝟐 But tan (πŸ’πŸ“Β°)/𝟐 = –1 – √𝟐 is not possible as (45Β°)/2 = 22.5Β° lies in first quadrant & tan is positive in first quadrant Therefore, tan (45Β°)/2 = βˆ’1 + √2 i.e. tan 𝝅/πŸ– = √𝟐 – 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo