Solve all your doubts with Teachoo Black (new monthly pack available now!)
Are you in school? Do you love Teachoo?
We would love to talk to you! Please fill this form so that we can contact you
Ex 3.4
Ex 3.4, 2 Deleted for CBSE Board 2023 Exams
Ex 3.4, 3 Important Deleted for CBSE Board 2023 Exams You are here
Ex 3.4, 4 Important Deleted for CBSE Board 2023 Exams
Ex 3.4, 5 Deleted for CBSE Board 2023 Exams
Ex 3.4, 6 Important Deleted for CBSE Board 2023 Exams
Ex 3.4, 7 Important Deleted for CBSE Board 2023 Exams
Ex 3.4, 8 Important Deleted for CBSE Board 2023 Exams
Ex 3.4, 9 Important Deleted for CBSE Board 2023 Exams
Ex 3.4
Last updated at Feb. 12, 2020 by Teachoo
Ex 3.4, 3 Find the principal and general solutions of the equation cot x = –√3 Given cot x = −√3 tan x = 1/cot𝑥 tan x = 1/(−√3) tan x = (−1)/√3 We know that tan 30° = 1/√3 Since tan x is negative So, x will lie in llnd and lVth Quadrant Value in llnd Quadrant = 180° – 30° = 150° Value in lVth Quadrant = 360° – 30° = 330° So, Principal Solution are x = 150° x = 150 × 𝜋/180 x = 𝟓𝝅/𝟔 x = 330° x = 330 × 𝜋/180 x = 𝟏𝟏𝝅/𝟔 Finding general solution Let tan x = tan y tan x = (−1)/√3 Form (1) and (2) tan y = (−1)/√3 tan y = tan 5𝜋/6 y = 5𝜋/6 (Calculated tan 5𝜋/6 = (−1)/√3 while finding principal solutions) Since tan x = tan y General Solution is x = nπ + y where n ∈ Z Putting x = 5𝜋/6 x = nπ + 𝟓𝝅/𝟔 where n ∈ Z