Example 6 - Prove that quadrilateral formed by internal - Examples

Slide12.JPG
Slide13.JPG

  1. Chapter 10 Class 9 Circles
  2. Serial order wise
Ask Download

Transcript

Example 6 Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic. Given: ABCD is a quadrilateral AH, BF, CF, DH are bisectors of A , B, C, D respectively To prove: EFGH is cyclic quadrilateral Proof: To prove EFGH is a cyclic quadrilateral, we prove that sum of one pair of opposite angles is 180 In AEB ABE + BAE + AEB = 180 AEB = 180 ABE BAE AEB = 180 (1/2 B + 1/2 A) AEB = 180 1/2 ( B + A) Now, lines AH & BF intersect So, FEH = AEB FEH = 180 1/2 ( B + A) Similarly, we can prove that FGH = 180 1/2 ( C + D) Adding (2) & (3) FEH + FGH = 180 1/2 ( A + D) + 180 1/2 ( C + B) FEH + FGH = 180 + 180 1/2 ( A + D + C + B ) FEH + FGH = 360 1/2 ( A + B + C + D ) FEH + FGH = 360 1/2 ( A + B + C + D ) FEH + FGH = 360 1/2 360 FEH + FGH = 360 180 FEH + FGH = 180 Thus, in EFGH, Since sum of one pair of opposite angles is 180 EFGH is a cyclic quadrilateral

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.