
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Important Questions on Lines, Angles, Triangles
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams You are here
Last updated at May 29, 2023 by Teachoo
Ex 6.3 ,6 In the given figure, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR= 1/2 ∠QPR Given TQ is the bisector of ∠ PQR. So, ∠ PQT = ∠ TQR = 1/2 ∠ PQR Also, TR is the bisector of ∠ PRS So, ∠ PRT = ∠ TRS = 1/2 ∠ PRS In Δ PQR, ∠ PRS is the external angle ∠ PRS = ∠ QPR + ∠ PQR In Δ TQR, ∠ TRS is the external angle ∠ TRS = ∠ TQR + ∠ QTR Putting ∠ TRS = 1/2 ∠ PRS & ∠ TQR = 1/2 ∠ PQR 1/2 ∠PRS = 1/2 ∠ PQR + ∠ QTR 1/2 ∠PRS = 1/2 ∠ PQR + ∠ QTR Putting ∠ PRS = ∠ QPR + ∠ PQR from (1) 1/2 (∠ QPR + ∠ PQR) = 1/2 ∠ PQR + ∠ QTR 1/2 ∠ QPR + 1/2∠ PQR = 1/2 ∠ PQR + ∠ QTR 1/2 ∠ QPR + 1/2∠ PQR – 1/2 ∠ PQR = ∠ QTR 1/2 ∠ QPR = ∠ QTR ∠ QTR = 1/2 ∠ QPR Hence proved