Advertisement
Last updated at July 12, 2018 by Teachoo
Transcript
Example18 Rationalize the denominator of 1/(2+√3). To rationalize, We multiply and divide by 2 - root 3 Let's check the video 1/(2+√3) = 1/(2+√3) × (2 −√3)/(2−√3) = (2 −√3)/(22−(√3)2) = (2 −√3)/(4−3) = (2 −√3)/1 = 2 -√3 .
Rationalising
Add (3√2+7√3) and (√2−5√3)
Divide 5√11 by 3√33
Multiply 2√15 by 7√5
Simplify (√5+√7)^2
Simplify (√4−√13)(√4+√13)
Simplify (9−√3)(9+√3)
Simplify (3√5−5√2)(4√5+3√2)
Rationalise the denominator of 8/√7
Rationalise the denominator of 1/((8 + 5√2))
Simplify (7√3)/(√10 + √3)−(2√5)/(√6 + √5)−(3√2)/(√15 + 3√2)
Multiple Choice Questions - Chapter 1 Class 9 Maths
Example 17
If a and b are rational numbers and (√11 − √7)/(√11 + √7) = a – b√77, find the value of a and b
Example 18 You are here
Find the values of a and b if (7 + 3√5)/(3 + √5) – (7 − 3√5)/(3 − √5) = a+√5 b
If x = 1/(2 − √3), find the value of x^3 − 2x^2 − 7x + 5
Ex 1.5, 5 (i)
If a = 5 + 2√6 and b = 1/a, then what will be the value of a^2+b^2 ?
Example 19
Example 20 Important
Rationalising
About the Author