Check sibling questions


Transcript

Example 10 Simplify (a + b) (2a โ€“ 3b + c) โ€“ (2a โ€“ 3b) c. Here there are two expressions 1st expression = (๐‘Ž+๐‘) (2๐‘Žโˆ’3๐‘+๐‘) 2nd expression = (2๐‘Žโˆ’3๐‘) ๐‘ Solving 1st expression (๐‘Ž+๐‘) (2๐‘Žโˆ’3๐‘+๐‘) = ๐‘Ž(2๐‘Žโˆ’3๐‘+๐‘)+๐‘(2๐‘Žโˆ’3๐‘+๐‘) = (๐‘Žร—2๐‘Ž)โˆ’(๐‘Žร—3๐‘)+(๐‘Žร—๐‘)+(๐‘ร—2๐‘Ž)โˆ’(๐‘ร—3๐‘)+(๐‘ร—๐‘) = 2๐‘Ž^2โˆ’3๐‘Ž๐‘+๐‘Ž๐‘+2๐‘Ž๐‘โˆ’3๐‘^2+๐‘๐‘ = 2๐‘Ž^2โˆ’3๐‘^2+๐‘Ž๐‘+๐‘๐‘โˆ’3๐‘Ž๐‘ +2๐‘Ž๐‘ = 2๐‘Ž^2โˆ’3๐‘^2+๐‘Ž๐‘+๐‘๐‘โˆ’๐‘Ž๐‘ Solving 2nd expression (2๐‘Žโˆ’3๐‘)๐‘ = 2๐‘Ž๐‘โˆ’3๐‘๐‘ Now, our expression is (๐‘Ž+๐‘)(2๐‘Žโˆ’3๐‘+๐‘)โˆ’(2๐‘Žโˆ’3๐‘)๐‘ = 2๐‘Ž^2โˆ’3๐‘^2+๐‘Ž๐‘+๐‘๐‘โˆ’๐‘Ž๐‘โˆ’(2๐‘Ž๐‘โˆ’3๐‘๐‘) = 2๐‘Ž^2โˆ’3๐‘^2+๐‘Ž๐‘+๐‘๐‘โˆ’๐‘Ž๐‘โˆ’2๐‘Ž๐‘+3๐‘๐‘ = 2๐‘Ž^2โˆ’3๐‘^2โˆ’๐‘Ž๐‘+(๐‘Ž๐‘โˆ’2๐‘Ž๐‘)+(๐‘๐‘+3๐‘๐‘) = ๐Ÿ๐’‚^๐Ÿโˆ’๐Ÿ‘๐’ƒ^๐Ÿโˆ’๐’‚๐’ƒโˆ’๐’‚๐’„+๐Ÿ’๐’ƒ๐’„

  1. Chapter 8 Class 8 Algebraic Expressions and Identities
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo