Last updated at Dec. 16, 2024 by Teachoo
Ex 10.5, 5 (Supplementary NCERT) Show that the four points with position vectors 4๐ ฬ + 8๐ ฬ + 12๐ ฬ, 2๐ ฬ + 4๐ ฬ + 6๐ ฬ, 3๐ ฬ + 5๐ ฬ + 4๐ ฬ & 5๐ ฬ + 8๐ ฬ + 5๐ ฬ are coplanarLet points be A = 4๐ ฬ + 8๐ ฬ + 12๐ ฬ B = 2๐ ฬ + 4๐ ฬ + 6๐ ฬ C = 3๐ ฬ + 5๐ ฬ + 4๐ ฬ D = 5๐ ฬ + 8๐ ฬ + 5๐ ฬ Four points A, B, C, D are coplanar if the three vectors (๐ด๐ต) โ , (๐ด๐ถ) โ and (๐ด๐ท) โ are coplanar. i.e. [(๐จ๐ฉ) โ, (๐จ๐ช) โ, (๐จ๐ซ) โ ] = 0 A (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) B (2๐ ฬ + 4๐ ฬ + 6๐ ฬ) (๐จ๐ฉ) โ = (2๐ ฬ + 4๐ ฬ + 6๐ ฬ) โ (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) = (2 โ 4) ๐ ฬ + (4 โ 8) ๐ ฬ + (6 โ 12)๐ ฬ = โ2๐ ฬ โ 4๐ ฬ โ 6๐ ฬ A (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) C (3๐ ฬ + 5๐ ฬ + 4๐ ฬ) (๐จ๐ช) โ = (3๐ ฬ + 5๐ ฬ + 4๐ ฬ) โ (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) = (3 โ 4) ๐ ฬ + (5 โ 8) ๐ ฬ + (4 โ 12) ๐ ฬ = โ๐ ฬ โ 3๐ ฬ โ 8๐ ฬ A (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) D (5๐ ฬ + 8๐ ฬ + 5๐ ฬ) (๐จ๐ซ) โ = (5๐ ฬ + 8๐ ฬ + 5๐ ฬ) โ (4๐ ฬ + 8๐ ฬ + 12๐ ฬ) = (5 โ 4) ๐ ฬ + (8 โ 8) ๐ ฬ + (5 โ 12) ๐ ฬ = ๐ ฬ + 0๐ ฬ โ 7๐ ฬ Now, [(๐ด๐ต) โ, (๐ด๐ถ) โ, (๐ด๐ท) โ ] = |โ 8(โ2&โ4&โ6@โ1&โ3&โ8@1&0&โ7)| = โ2[(โ3รโ7)โ(0รโ8) ] โ (โ4) [(โ1รโ7)โ(1รโ8)] + (โ6)[(โ1ร0)โ(1รโ3) ] = โ2[21โ0]+4[7+8]โ6[0+3] = โ2[21]+4[15]โ6[3] = โ 42 + 60 โ 18 = 60 โ 60 = 0 โด [(๐จ๐ฉ) โ, (๐จ๐ช) โ, (๐จ๐ซ) โ ] = 0 Therefore, points A, B, C and D are coplanar.
Ex 10.5 (Supplementary NCERT)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo