Question 8 - Bernoulli Trial - Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 8 Suppose X has a binomial distribution B (6, 12) . Show that X = 3 is the most likely outcome. (Hint : P(X = 3) is the maximum among all P(xi), xi = 0,1,2,3,4,5,6) B(6, 12) means Here , n = 6, p = 𝟏𝟐 So , q = 1 − 12 = 12 Hence, P (X = x) = 6Cx 12𝑥 126−𝑥 P (X = x) = 6Cx 12𝑥 + 6 − 𝑥 P (X = x) = 6Cx 𝟏𝟐𝒙 Hence, P (X = x) = 6Cx 12𝑥 We need to show that X = 3 is the most likely outcome. i.e. P(X = 3) is the maximum among P(X = 0) , P(X = 1), P(X = 2), P(X = 3), P(X = 4), P(X = 5), P(X = 6) Since P(X = 3) is maximum ∴ Most likely outcome is X = 3
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo