Question 4 - Bernoulli Trial - Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 4 Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that (i) all the five cards are spades? (ii) only 3 cards are spades? (iii) none is a spade?Let X : be the number of spade cards Drawing a card is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of cards drawn = 5 p = Probability of getting spade card = 13/52=1/4 q = 1 – p = 1 – 1/4=3/4 Hence, P(X = x) = 5Cx (𝟑/𝟒)^(𝟓−𝒙) (𝟏/𝟒)^𝒙 P(all cards are spade) = 5𝐶5(1/4)^5 (3/4)^0 = (1/4)^5 =𝟏/𝟏𝟎𝟐𝟒 P(only three cards are spade) = 5𝐶3(1/4)^3 (3/4)^2 = 5!/(3! 2!) × 9/1024 =𝟒𝟓/𝟓𝟏𝟐 (iii) P(none of them are spade) = 5𝐶0(1/4)^0 (3/4)^5 = (3/4)^5 = 𝟐𝟒𝟑/𝟏𝟎𝟐𝟒
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo