Check sibling questions


Transcript

Question 1 A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of (i) 5 successes? (ii) at least 5 successes? (iii) at most 5 successes?Let X : Number of times we get odd numbers in 6 throws of die Throwing a die is a Bernoulli trial So, X has a binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of throws = 6 p = Probability of getting an odd number = 3/6 = 1/2 q = 1 – p = 1 – 1/2 = 1/2 Hence, P(X = x) = 6Cx (1/2)^𝑥 (1/2)^(6−𝑥) = 6Cx (1/2)^(6 − 𝑥 + 𝑥) = 6Cx (𝟏/𝟐)^𝟔 Probability 5 successes Probability 5 success = P(X = 5) Putting x = 5 in (1) P(X = 5) = 6C5 (1/2)^6 = 6 × 1/64 = 𝟑/𝟑𝟐 (ii) Probability appearing at least 5 successes i.e. P(X ≥ 5) P(X ≥ 5) = P(X = 5) + P(X = 6) = 6C5 (1/2)^6+ 6C6 (1/2)^6 = 6 (1/2)^6 + (1/2)^6 = 7(1/2)^6 = 𝟕/𝟔𝟒 (iii) Probability appearing at most 5 success i.e. P(X ≤ 5) P(X ≤ 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 6C0 (1/2)^6 + 6C1 (1/2)^6 + 6C2 (1/2)^6 + 6C3 (1/2)^6 + 6C4 (1/2)^6+ 6C5 (1/2)^6 = (1/2)^6 (6C0 + 6C1 + 6C2 + 6C3 + 6C4 + 6C5) = (1/2)^10(1 + 6 + 15 + 20 + 15 + 6) = 𝟔𝟑/𝟔𝟒

  1. Chapter 13 Class 12 Probability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo