Check sibling questions

 


Transcript

Ex 1.2, 8 (Introduction) Let A and B be sets. Show that f: A × B → B × A such that f(a, b) = (b, a) is bijective function. Taking example Let A = {1, 2}, B = {3, 4, 5} A × B = { (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5) } f(1, 3) = (3, 1) f(1, 4) = (4, 1) f(1, 5) = (5, 1) f(2, 3) = (3, 2) f(2, 4) = (4, 2) f(2, 5) = (4, 1) All elements of B × A B × A = { (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2) } Ex 1.2, 8 Let A and B be sets. Show that f: A × B → B × A such that f (a, b) = (b, a) is bijective function. f(a, b) = (b, a). We can say that f(x) = (b, a). where x = (a, b) Checking one-one(injective) f (x1) = (b1, a1) f (x2) = (b2, a2) Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 Putting f (x1) = f (x2) (b1, a1) = (b2, a2) Hence, b1 = b2 & a1 = a2 Now, since a1 = a2 & b1 = b2 We can say that, (a1, b1) = (a2, b2) Hence, if f(x1) = f(x2) , then x1 = x2 Hence, f is one-one Check onto f: A × B → B × A f(a, b) = (b, a) f(x) = (b, a) Let y = (b, a) Now, for every (b, a) ∈ B × A, there exists (a, b) ∈ A × B, such that f(x) = y This is possible for all a ∈ A, and b ∈ B ∴ f is onto. Hence, f is one-one and onto i.e. bijective.

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo