Ex 1.2 , 8 - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 1.2, 8 (Introduction) Let A and B be sets. Show that f: A × B → B × A such that f(a, b) = (b, a) is bijective function. Taking example Let A = {1, 2}, B = {3, 4, 5} A × B = { (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5) } f(1, 3) = (3, 1) f(1, 4) = (4, 1) f(1, 5) = (5, 1) f(2, 3) = (3, 2) f(2, 4) = (4, 2) f(2, 5) = (4, 1) All elements of B × A B × A = { (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2) } Ex 1.2, 8 Let A and B be sets. Show that f: A × B → B × A such that f (a, b) = (b, a) is bijective function. f(a, b) = (b, a). We can say that f(x) = (b, a). where x = (a, b) Checking one-one(injective) f (x1) = (b1, a1) f (x2) = (b2, a2) Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 Putting f (x1) = f (x2) (b1, a1) = (b2, a2) Hence, b1 = b2 & a1 = a2 Now, since a1 = a2 & b1 = b2 We can say that, (a1, b1) = (a2, b2) Hence, if f(x1) = f(x2) , then x1 = x2 Hence, f is one-one Check onto f: A × B → B × A f(a, b) = (b, a) f(x) = (b, a) Let y = (b, a) Now, for every (b, a) ∈ B × A, there exists (a, b) ∈ A × B, such that f(x) = y This is possible for all a ∈ A, and b ∈ B ∴ f is onto. Hence, f is one-one and onto i.e. bijective.
Ex 1.2
Ex 1.2, 2 (i) Important
Ex 1.2, 2 (ii) Important
Ex 1.2, 2 (iii)
Ex 1.2, 2 (iv)
Ex 1.2, 2 (v) Important
Ex 1.2 , 3
Ex 1.2 , 4
Ex 1.2, 5 Important
Ex 1.2 , 6 Important
Ex 1.2, 7 (i)
Ex 1.2, 7 (ii)
Ex 1.2 , 8 Important You are here
Ex 1.2 , 9
Ex 1.2 , 10 Important
Ex 1.2 , 11 (MCQ) Important
Ex 1.2, 12 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo