Ex 1.2 , 3 - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 1.2, 3 (Introduction) Prove that the Greatest Integer Function f: R → R given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. f(x) = [x] = greatest integer less than equal to x Example: [1] = 1 [1.01] = 1 [1.2] = 1 [1.9] = 1 [1.99] = 1 [2] = 2 Ex 1.2, 3 Prove that the Greatest Integer Function f: R → R given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. f(x) = [x] where [x] denotes the greatest integer less than equal to x Check one-one f(x) = [x] Example f(1) = [1] = 1, f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1, f(1.99) = [1.99] = 1, Since, different elements 1, 1.2, 1.9, 1.99 have the same image 1 , ∴ f is not one-one. Check onto f(x) = [x] Let y = f(x) y = [x] i.e. y = Greatest integer less than or equal to x Hence, value of y will always come an integer. But y is a real number Hence f is not onto.
Ex 1.2
Ex 1.2, 2 (i) Important
Ex 1.2, 2 (ii) Important
Ex 1.2, 2 (iii)
Ex 1.2, 2 (iv)
Ex 1.2, 2 (v) Important
Ex 1.2 , 3 You are here
Ex 1.2 , 4
Ex 1.2, 5 Important
Ex 1.2 , 6 Important
Ex 1.2, 7 (i)
Ex 1.2, 7 (ii)
Ex 1.2 , 8 Important
Ex 1.2 , 9
Ex 1.2 , 10 Important
Ex 1.2 , 11 (MCQ) Important
Ex 1.2, 12 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo