Question 6 - Rolle's and Mean Value Theorem - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 6 Examine the applicability of Mean Value Theorem in the function (๐) ๐ (๐ฅ) = [๐ฅ] ๐๐๐ ๐ฅ โ [5, 9]Greatest Integer less than equal to ๐ฅ ๐ (๐ฅ) =[๐ฅ] is not continuous & differentiable โ Condition of Mean Value Theorem is not satisfied. Therefore, Mean Value Theorem is not applicable . Question 6 Examine the applicability of Mean Value Theorem in the function (๐๐) ๐ (๐ฅ) = [๐ฅ] ๐๐๐ ๐ฅ โ [โ2, 2]Greatest Integer less than equal to ๐ฅ ๐ (๐ฅ) =[๐ฅ] is not continuous & differentiable โ Condition of Mean Value Theorem is not satisfied. Therefore, Mean Value Theorem is not applicable . Question 2 Examine the applicability of Mean Value Theorem in the function (๐๐๐) ๐ (๐ฅ) = ๐ฅ2 โ 1 ๐๐๐ ๐ฅ โ [1, 2]๐ (๐ฅ) = ๐ฅ2 โ 1 ๐๐๐ ๐ฅ โ [1 , 2] Condition 1 ๐(๐ฅ) = ๐ฅ2 โ 1 ๐(๐ฅ) is a polynomial & Every polynomial function is continuous โ ๐(๐ฅ) is continuous at ๐ฅโ[1, 2]Conditions of Mean value theorem ๐(๐ฅ) is continuous at (๐ , ๐) ๐(๐ฅ) is derivable at (๐ , ๐) If both conditions satisfied, then there exist some c in (๐ , ๐) such that ๐โฒ(๐) = (๐(๐) โ ๐(๐))/(๐ โ ๐) ๐(๐)" = " ๐(2) = (2)^2โ1 = 4โ1 = 3 By Mean Value Theorem ๐^โฒ (๐) = (๐(๐) โ ๐(๐))/(๐ โ ๐) 2๐ = (3 โ (0))/(2 โ 1) 2๐ = 3/1 ๐ = 3/2 ๐ = ๐/๐ lies between 1 & 2 i.e., ๐ = 3/2โ [1, 2] Hence Mean Value Theorem is satisfied. Question 6 Examine the applicability of Mean Value Theorem in the function (๐) ๐ (๐ฅ) = [๐ฅ] ๐๐๐ ๐ฅ โ [5, 9] Greatest Integer less than equal to ๐ฅ ๐ ๐ฅ๏ทฏ = ๐ฅ๏ทฏ is not continuous & differentiable โ Condition of Mean Value Theorem is not satisfied. Therefore, Mean Value Theorem is not applicable . Question 6 Examine the applicability of Mean Value Theorem in the function (๐๐) ๐ (๐ฅ) = [๐ฅ] ๐๐๐ ๐ฅ โ [โ2, 2] Greatest Integer less than equal to ๐ฅ ๐ ๐ฅ๏ทฏ = ๐ฅ๏ทฏ is not continuous & differentiable โ Condition of Mean Value Theorem is not satisfied. Therefore, Mean Value Theorem is not applicable . Question 2 Examine the applicability of Mean Value Theorem in the function (๐๐๐) ๐ (๐ฅ) = ๐ฅ2 โ 1 ๐๐๐ ๐ฅ โ [1, 2] ๐ (๐ฅ) = ๐ฅ2 โ 1 ๐๐๐ ๐ฅ โ [1 , 2] Condition 1 ๐ ๐ฅ๏ทฏ = ๐ฅ2 โ 1 ๐(๐ฅ) is a polynomial & Every polynomial function is continuous โ ๐ ๐ฅ๏ทฏ is continuous at ๐ฅโ[1, 2] Condition 2 ๐ ๐ฅ๏ทฏ=๐ฅ2 โ 1 ๐(๐ฅ) is a polynomial & Every polynomial function is differentiable โ ๐ ๐ฅ๏ทฏ is differentiable at ๐ฅโ 1, 2๏ทฏ Condition 3 ๐ ๐ฅ๏ทฏ = ๐ฅ2 โ 1 ๐๏ทฎโฒ๏ทฏ ๐ฅ๏ทฏ = 2๐ฅ โ0 ๐๏ทฎโฒ๏ทฏ ๐๏ทฏ = 2๐ ๐ ๐ฅ๏ทฏ = ๐ฅ2 โ 1 ๐ ๐๏ทฏ = ๐ 1๏ทฏ = 1๏ทฏ๏ทฎ2๏ทฏโ1 = 1 โ 1 = 0 ๐ ๐๏ทฏ = ๐ 2๏ทฏ = 2๏ทฏ๏ทฎ2๏ทฏโ1 = 4โ1 = 3 By Mean Value Theorem ๐๏ทฎโฒ๏ทฏ ๐๏ทฏ = ๐ ๐๏ทฏ โ ๐ ๐๏ทฏ๏ทฎ๐ โ ๐๏ทฏ 2๐ = 3 โ 0๏ทฏ๏ทฎ2 โ 1๏ทฏ 2๐ = 3๏ทฎ1๏ทฏ ๐ = 3๏ทฎ2๏ทฏ ๐ = ๐๏ทฎ๐๏ทฏ lies between 1 & 2 i.e., ๐ = 3๏ทฎ2๏ทฏโ [1, 2] Hence Mean Value Theorem is satisfied.
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo