Check sibling questions


Transcript

Ex 10.4, 7 Let the vectors ๐‘Ž โƒ— ๐‘ โƒ—, ๐‘ โƒ— be given as ๐‘Ž_1 ๐‘– ฬ‚ + ๐‘Ž_2 ๐‘— ฬ‚ +๐‘Ž_3 ๐‘˜ ฬ‚, ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ +๐‘_3 ๐‘˜ ฬ‚, ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ +๐‘_3 ๐‘˜ ฬ‚ Then show that ๐‘Ž โƒ— ร— (๐‘ โƒ— + ๐‘ โƒ—) =๐‘Ž โƒ— ร—๐‘ โƒ— + ๐‘Ž โƒ— ร— ๐‘ โƒ—. Let ๐‘Ž โƒ— = ๐‘Ž_1 ๐‘– ฬ‚ + ๐‘Ž_2 ๐‘— ฬ‚ +๐‘Ž_3 ๐‘˜ ฬ‚ ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ +๐‘_3 ๐‘˜ ฬ‚, ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ + ๐‘_3 ๐‘˜ ฬ‚ We need to show : ๐‘Ž โƒ— ร— (๐‘ โƒ— + ๐‘ โƒ—) = ๐‘Ž โƒ— ร— ๐‘ โƒ— + ๐‘Ž โƒ— ร— ๐‘ โƒ— RHS (๐‘Ž โƒ— ร— ๐‘ โƒ—) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@๐‘Ž1&๐‘Ž2&๐‘Ž3@๐‘1&๐‘2&๐‘3)| = (๐‘Ž2 ๐‘3 โˆ’ ๐‘2 ๐‘Ž3) ๐‘– ฬ‚ โˆ’ (๐‘Ž1 ๐‘3 โˆ’ ๐‘1 ๐‘Ž3) ๐‘— ฬ‚ + (๐‘Ž1 ๐‘2 โˆ’ ๐‘1 ๐‘Ž2) ๐‘˜ ฬ‚ (๐‘Ž โƒ— ร— ๐‘ โƒ—) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@๐‘Ž1&๐‘Ž2&๐‘Ž3@๐‘1&๐‘2&๐‘3)| = (๐‘Ž2" " ๐‘3 โˆ’ ๐‘2" " ๐‘Ž3) ๐‘– ฬ‚ โˆ’ (๐‘Ž1" " ๐‘3 โˆ’ ๐‘1" " ๐‘Ž3) ๐‘— ฬ‚ + (๐‘Ž1" " ๐‘2 โˆ’ ๐‘1" " ๐‘Ž2) ๐‘˜ ฬ‚ (๐’‚ โƒ— ร— ๐’ƒ โƒ—) + (๐’‚ โƒ— ร— ๐’„ โƒ—) = [๐‘Ž2" " ๐‘3โˆ’๐‘2 ๐‘Ž3+๐‘Ž2 ๐‘3โˆ’๐‘2๐‘Ž3] ๐‘– ฬ‚ โˆ’ [๐‘Ž1" " ๐‘3โˆ’๐‘1 ๐‘Ž3+๐‘Ž1 ๐‘3โˆ’๐‘1๐‘Ž3] ๐‘— ฬ‚ + [๐‘Ž1" " ๐‘2โˆ’๐‘1 ๐‘Ž2+๐‘Ž1 ๐‘2โˆ’๐‘1๐‘Ž2] ๐‘˜ ฬ‚ Since the corresponding components are equal, So, ๐‘Ž โƒ— ร— (๐‘ โƒ— + ๐‘ โƒ—) = ๐‘Ž โƒ— ร— ๐‘ โƒ— + ๐‘Ž โƒ— ร— ๐‘ โƒ— Hence proved. Ex 10.4, 7 Let the vectors , be given as 1 + 2 + 3 , 1 + 2 + 3 , 1 + 2 + 3 Then show that ( + ) = + . Let = 1 + 2 + 3 = 1 + 2 + 3 , = 1 + 2 + 3 We need to show : ( + ) = + LHS ( + ) = ( 1 + 1) + ( 2 + 2) + ( 3 + 3) ( + ) = 1 ( 1+ 1) 2 ( 2+ 2) 3 ( 3+ 3) = 2 ( 3 + 3) ( 2 + 2) 3 1 ( 3 + 3) ( 1 + 1) 3 + 1 ( 2 + 2) ( 1 + 1) 2 = 2 3+ 2 3 2 3 2 3 1 3 1 3+ 1 3 1 3 + 1 2+ 1 2 1 2 1 2

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo