Last updated at Dec. 16, 2024 by Teachoo
Ex 10.4, 3 If a unit vector ๐ โ makes angles ๐/3 with ๐ ฬ, ๐/4 , with ๐ ฬ & an acute angle ฮธ with ๐ ฬ , then find ฮธ and hence, the components of ๐ โ . Let us take a unit vector ๐ โ = ๐ฅ๐ ฬ + y๐ ฬ + z๐ ฬ So, magnitude of ๐ โ = |๐ โ | = 1 Angle of ๐ โ with ๐ ฬ = ๐ /๐ ๐ โ . ๐ ฬ = |๐ โ ||๐ ฬ | cos ๐/3 (x๐ ฬ + y๐ ฬ + z๐ ฬ). ๐ ฬ = 1 ร 1 ร 1/2 (x๐ ฬ + y๐ ฬ + z๐ ฬ). (1๐ ฬ + 0๐ ฬ + 0๐ ฬ) = 1/2 (x ร 1) + (y ร 0) + (z ร 0) = 1/2 x + 0 + 0 = 1/2 x = ๐/๐ Angle of ๐ โ with ๐ ฬ = ๐ /๐ ๐ โ . ๐ ฬ = |๐ โ ||๐ ฬ | cos ๐/4 (x๐ ฬ + y๐ ฬ + z๐ ฬ). ๐ ฬ = 1 ร 1 ร 1/โ2 (x๐ ฬ + y๐ ฬ + z๐ ฬ). (0๐ ฬ + 1๐ ฬ + 0๐ ฬ) = 1/โ2 (x ร 0) + (y ร 1) + (z ร 0) = 1/โ2 0 + y + 0 = 1/โ2 y = ๐/โ๐ Also, Angle of ๐ โ with ๐ ฬ = ฮธ ๐ โ. ๐ ฬ = |๐ โ ||๐ ฬ |รcosโก"ฮธ" (x๐ ฬ + y๐ ฬ + z๐ ฬ). (0๐ ฬ + .0๐ ฬ + 1๐ ฬ) = 1 ร 1 ร cos ฮธ (x ร 0) + (y ร 0) + (z ร 1) = cosฮธ 0 + 0 + z = cos ฮธ z = cos ฮธ Now, Magnitude of ๐ โ = โ(๐ฅ^2+๐ฆ2+๐ง2) 1 = โ((1/2)^2+(1/โ2)^2+๐๐๐ 2"ฮธ" ) 1 = โ(1/4+1/2+๐๐๐ 2"ฮธ" ) 1 = โ(3/4+๐๐๐ 2"ฮธ" ) โ(3/4+๐๐๐ 2"ฮธ" ) = 1 (โ(3/4+๐๐๐ 2"ฮธ" ))^2 = 12 3/4 + ๐๐๐ 2" ฮธ" = 1 ๐๐๐ 2 "ฮธ" = 1 โ 3/4 ๐๐๐ 2" ฮธ" = 1/4 cosโก"ฮธ" = ยฑ โ(1/4) cosโก"ฮธ" = ยฑ 1/2 Since ฮธ is given an acute angle So, ฮธ < 90ยฐ โด ฮธ is in 1st quadrant And, cos ฮธ is positive in 1st quadrant= So, cos ฮธ = 1/2 โด ฮธ = 60ยฐ = ๐ /๐ Also, z = cos ฮธ = cos 60ยฐ = ๐/๐ Hence x = 1/2 , y = 1/โ2 & z = 1/2 The required vector ๐ โ is 1/2 ๐ ฬ + 1/โ2 ๐ ฬ + 1/2 ๐ ฬ So, components of ๐ โ are ๐/๐ , ๐/โ๐ & ๐/๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo