Check sibling questions


Transcript

Misc 26 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): 4x + 5 sin﷮x﷯﷮3x + 7 cos﷮x﷯﷯ Let f (x) = 4𝑥 + 5 sin﷮𝑥﷯﷮3x + 7 cos x﷯ Let u = 4x + 5 sin & v = 3x + 7 cos x ∴ f(x) = 𝑢﷮𝑣﷯ So, f’ (x) = 𝑢﷮𝑣﷯﷯﷮′﷯ Using quotient rule f’(x) = 𝑢﷮′﷯𝑣 − 𝑣﷮′﷯𝑢﷮ 𝑣﷮2﷯﷯ Finding u’ & v’ u = 4x + 5sin x u’ = (4x + 5sin x)’ = 4 .1 x1 – 1 + 5 cos x = 4 + 5 cos x & v = 3x + 7 cos x v’ = (3x + 7 cos x)’ = 3 . 1x1 – 1 + 7 ( – sin x) = 3x0 + 7 ( – sin x) = 3 – 7 sin x Now, f’(x) = 𝑢﷮𝑣﷯﷯﷮′﷯ = 𝑢﷮′﷯𝑣 − 𝑣﷮′﷯𝑢﷮ 𝑣﷮2﷯﷯ = (4 + 5 cos﷮𝑥)﷯ (3𝑥 + 7 cos﷮𝑥)﷯ − (3 − 7 sin﷮𝑥)﷯ (4𝑥 + 5 sin﷮𝑥)﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 4(3𝑥 + 7 cos﷮𝑥)+5 cos﷮𝑥(3𝑥+7 cos﷮𝑥)−3(4𝑥+5 sin﷮𝑥)+7 sin﷮𝑥 (4𝑥+5 sin﷮𝑥)﷯﷯﷯﷯﷯﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 12𝑥 + 28 cos﷮𝑥 + 15 cos﷮𝑥 + 35 cos2﷮𝑥 −12𝑥 −15 sin﷮𝑥 ﷯+28𝑥 sin﷮𝑥 +35𝑠𝑖𝑛2 𝑥 ﷯ ﷯﷯﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 28 cos﷮𝑥 + 28𝑥 sin﷮𝑥 + 15 𝑥 cos﷮− 15 sin﷮𝑥 + 35 𝑐𝑜𝑠2 𝑥 + 35 𝑠𝑖𝑛2 𝑥﷯﷯﷯﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 28( cos﷮𝑥 + 𝑥 sin﷮𝑥) + 15(𝑥 cos﷮𝑥 − sin﷮𝑥) + 35 (𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝟐 𝒙)﷯﷯﷯﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 28( cos﷮𝑥 + 𝑥 sin﷮𝑥) + 15(𝑥 cos﷮𝑥 − sin﷮𝑥) + 35 𝟏﷯ ﷯﷯﷯﷯﷮ (3𝑥 + 7 cos﷮𝑥﷯)﷮2﷯﷯ = 𝟐𝟖( 𝒄𝒐𝒔﷮𝒙 + 𝒙 𝒔𝒊𝒏﷮𝒙) + 𝟏𝟓(𝒙 𝒄𝒐𝒔﷮𝒙 − 𝒔𝒊𝒏﷮𝒙) + 𝟑𝟓 ﷯﷯﷯﷯﷮ (𝟑𝒙 + 𝟕 𝒄𝒐𝒔﷮𝒙﷯)﷮𝟐﷯﷯

  1. Chapter 12 Class 11 Limits and Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo