Check sibling questions

 

 

 


Transcript

Example 20 Find the derivative of f(x) from the first principle, where f(x) is (i) sin x + cos x Given f (x) = sin x + cos x We need to find Derivative of f(x) We know that f’(x) = lim┬(hβ†’0) 𝑓⁑〖(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)γ€—/β„Ž Here, f (x) = sin x + cos x f (x + h) = sin (x + h) + cos (x + h) Putting values f’(x) = lim┬(hβ†’0)⁑〖(sin⁑〖(π‘₯ + β„Ž)γ€— + cos⁑(π‘₯ + β„Ž) βˆ’ (sin⁑π‘₯ + cos⁑〖π‘₯)γ€—)/β„Žγ€— Using sin (A + B) = sin A cos B + cos A sin B & cos (A + B) = cos A cos B – sin A sin B = lim┬(hβ†’0)⁑〖sin⁑〖π‘₯ cosβ‘γ€–β„Ž +γ€– cos〗⁑〖π‘₯ sinβ‘γ€–β„Ž + cos⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’ sin⁑〖π‘₯ γ€– sinγ€—β‘γ€–β„Ž βˆ’γ€– sin〗⁑〖π‘₯ βˆ’γ€– cos〗⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑〖cos⁑〖π‘₯ sinβ‘γ€–β„Ž βˆ’γ€– sin〗⁑〖π‘₯ sinβ‘γ€–β„Ž + sin⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’ sin⁑〖π‘₯ +γ€– cos〗⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’γ€– cos〗⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑〖sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’ sin⁑〖π‘₯) + sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1) + cos⁑π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑(sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’ sin⁑〖π‘₯)γ€— γ€— γ€—/h+sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/h+cos⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/β„Ž)" " = lim┬(hβ†’0)⁑〖sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’γ€– sin〗⁑〖π‘₯)γ€— γ€— γ€—/h+lim┬(hβ†’0) sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/h+lim┬(hβ†’0) cos⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/β„Žγ€— = lim┬(hβ†’0)⁑〖"(cos x – sin x)" sinβ‘β„Ž/β„Ž+lim┬(hβ†’0) "(– sin x)" ((1 βˆ’ cosβ‘γ€–β„Ž)γ€—)/β„Žγ€—+lim┬(hβ†’0) "(– cos x)" ((1 βˆ’ cosβ‘γ€–β„Ž)γ€—)/β„Ž = "(cos x – sin x)" (π₯𝐒𝐦)┬(π‘β†’πŸŽ)⁑〖𝐬𝐒𝐧⁑𝒉/π’‰βˆ’sin⁑〖π‘₯ (π₯𝐒𝐦)┬(π‘β†’πŸŽ) γ€— ((𝟏 βˆ’ 𝒄𝒐𝒔⁑〖𝒉)γ€—)/π’‰βˆ’cos⁑π‘₯ (π₯𝐒𝐦)┬(π‘β†’πŸŽ) ((𝟏 βˆ’ 𝒄𝒐𝒔⁑〖𝒉)γ€—)/𝒉〗Using (π‘™π‘–π‘š)┬(β„Žβ†’0) π‘ π‘–π‘›β‘β„Ž/β„Ž = 1 & (π‘™π‘–π‘š)┬(β„Žβ†’0) γ€–(1 βˆ’ π‘π‘œπ‘ γ€—β‘γ€–β„Ž)γ€—/β„Ž = 0 Using (π‘™π‘–π‘š)┬(β„Žβ†’0) π‘ π‘–π‘›β‘β„Ž/β„Ž = 1 & (π‘™π‘–π‘š)┬(β„Žβ†’0) γ€–(1 βˆ’ π‘π‘œπ‘ γ€—β‘γ€–β„Ž)γ€—/β„Ž = 0

  1. Chapter 12 Class 11 Limits and Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo