Check sibling questions


Transcript

Example ,6 (Method 1) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 We know that f’(x) = lim﷮h→0﷯ f﷮ 𝑥 + ℎ﷯ − f (x)﷯﷮h﷯ Now f (x) = 2x2 + 3x – 5 So, f (x + h) = 2(x + h)2 + 3(x + h) – 5 Putting values f’ (x) = lim﷮h→0﷯ (2(𝑥 + ℎ)﷮2﷯ + 3 𝑥 + ℎ﷯ − 5) − (2𝑥﷮2﷯ + 3𝑥 − 5)﷮h﷯ f’ (x) = lim﷮h→0﷯ (2(𝑥 + ℎ)﷮2﷯ + 3 𝑥 + ℎ﷯ − 5) − (2𝑥﷮2﷯ + 3𝑥 − 5)﷮h﷯ Putting x = – 1 f’( –1) = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (2 ((−1)﷮2﷯) + 3(−1) − 5)﷮h﷯ = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (2 1﷯ − 3 − 5)﷮h﷯ = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (−6)﷮h﷯ = lim﷮h→0﷯ 2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5 + 6﷮h﷯ = lim﷮h→0﷯ 2 −1﷯2 + ℎ2 +2 −1﷯ℎ﷯ − 3 + 3ℎ + 1﷮h﷯ = lim﷮h→0﷯ 2 1 + ℎ2 − 2ℎ﷯ + 3ℎ − 2﷮h﷯ = lim﷮h→0﷯ 2 + 2ℎ2 − 4ℎ + 3ℎ − 2﷮h﷯ = lim﷮h→0﷯ 2ℎ2− ℎ﷮h﷯ = lim﷮h→0﷯ ℎ(2ℎ − 1)﷮h﷯ = lim﷮h→0﷯ 2h – 1 Putting h = 0 = 2(0) – 1 = – 1 Hence f’( –1) = – 1 Now, finding f’(0) For f’(0) f’(x)= lim﷮h→0﷯ 𝑓 𝑥 + ℎ﷯ − 𝑓(𝑥)﷮ℎ﷯ f’(x)= lim﷮h→0﷯ 2 𝑥 + ℎ﷯2 + 3 𝑥 + ℎ﷯ − 5﷯ −[2𝑥2 + 3𝑥 − 5]﷮ℎ﷯ putting x = 0 f’(0)= lim﷮h→0﷯ 2 0 + ℎ﷯2 + 3 0 + ℎ﷯ − 5﷯ −[2(0)2 + 3(0) − 5]﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ − 5﷯ − [0 + 0 − 5]﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ − 5 + 5﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ﷮ℎ﷯ = lim﷮h→0﷯ ℎ(2ℎ+3)﷮h﷯ = lim﷮h→0﷯ 2h + 3 Putting h = 0 = 2(0) + 3 = 3 Hence, f’(0) = 3 Now, f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 0 Hence Proved Example 6 (Method 2) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 Now, f’(x) = (2x2 + 3x – 5)’ = 2(2.x2–1) + 3(1.x1–1) – 0 = 2(2x1) + 3(1) = 4x + 3 Putting x = 0 f’(0) = 4(0) + 3 = 0 + 3 = 3 Taking f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 3 – 3 = 0 Hence Proved

  1. Chapter 12 Class 11 Limits and Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo