Question 2 (iii) - Rolle's and Mean Value Theorem - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 2 Examine if Rolleβs theorem is applicable to the functions. Can you say some thing about the converse of Rolleβs theorem from this function? (πππ) π (π₯) = π₯2 β 1 πππ π₯ β [1, 2]π (π₯) = π₯2 β 1 πππ π₯ β [1 , 2] Condition 1 π(π₯) = π₯2 β 1 π(π₯) is a polynomial & Every polynomial function is continuous β π(π₯) is continuous at π₯β[1, 2] Conditions of Rolleβs theorem π(π₯) is continuous at (π , π) π(π₯) is derivable at (π , π) π(π) = π(π) If all 3 conditions satisfied then there exist some c in (π , π) such that πβ²(π) = 0 Condition 2 π(π₯)=π₯2 β 1 π(π₯) is a polynomial & Every polynomial function is differentiable β π(π₯) is differentiable at π₯β[1, 2] Condition 3 π(π₯) = π₯2 β 1 π(1) = (1)^2+(1) = 1 β 1 = 0 & π(2) = (2)^2β1= 4β1 = 3 Since π(π) β π(π) Thus third condition of Rolleβs Theorem is not satisfied. Therefore Rolleβs theorem is not applicable Conditions of Rolleβs theorem π(π₯) is continuous at (π , π) π(π₯) is derivable at (π , π) π(π) = π(π) If all 3 conditions satisfied then there exist some c in (π , π) such that πβ²(π) = 0 Converse of Rolleβs Theorem If π [π, π]βπ for some πβ[π, π] for which π^β² (π)=0 then (i) π(π) = π(π) (ii) π is continuous at [π, π] (iii) & Differentiable at [π, π] Now, π(π₯)=π₯^2β1 π^β² (π₯)=2π₯ π^β² (π)=2π Conditions of Rolleβs theorem π(π₯) is continuous at (π , π) π(π₯) is derivable at (π , π) π(π) = π(π) If all 3 conditions satisfied then there exist some c in (π , π) such that πβ²(π) = 0 If π^β² (π)=0 2π=0 π=0 Since π=0 does not belong in (1, 2) i.e. c = 0 β (1 , 2) β There is no value of c for which π^β² (π)=0 β΄ Converse of Rolleβs Theorem is also not applicable.
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo