Last updated at Feb. 14, 2025 by Teachoo
Ex 9.2, 2 If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. Given: Let AB & CD be the two equal chords intersecting at point X. ⇒ AB = CD To prove: Corresponding segments are equal, i.e., AX = DX and BX = CX Proof: We draw OM ⊥ AB & ON ⊥ CD So, AM = BM = 1/2 AB & DN = CN = 1/2 CD As AB = CD, ⇒ 1/2 AB = 1/2 CD ∴ AM = DN & MB = CN In ΔOMX and ΔONX, ∠OMX = ∠ONX OX = OX OM = ON ∴ ΔOMX ≅ ΔONX ∴ MX = NX Adding (1) & (3) AM + MX = DN + NX AX = DX Therefore, AX = DX & BX = CX Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo