Ex 10.4, 3 - If two equal chords of a circle intersect - Equal chords and their distance from centre

Slide2.JPG


  1. Chapter 10 Class 9 Circles
  2. Serial order wise
Ask Download

Transcript

Ex10.4, 3 If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords. Given: Let AB & CD be the two equal chords intersecting at point X. ⇒ AB = CD To prove: OX makes equal angles with the chord i.e. ∠ OXA = ∠ OXD Proof: We draw OM ⊥ AB & ON ⊥ CD In ΔOMX and ΔONX, ∠OMX = ∠ONX OX = OX OM = ON ∴ ΔOMX ≅ ΔONX ΔOPX ≅ ΔOQX ∴ ∠OXM = ∠OXN i.e., ∠ OXA = ∠ OXD Hence proved

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
Jail