Question 2 - Important Triangle Questions - Chapter 7 Class 9 Triangles
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 2 In a triangle locate a point in its interior which is equidistant from all the sides of the triangle. An interior point in a triangle which is equidistant from all the sides is its incenter To locate the incenter of ∆ABC, We find intersection of its angle bisectors Finding Angle bisector of ∠ B Draw an arc of any radius intersecting BA and BC at points E & D Next, taking D and E as centers and with the radius more than 1/2 DE, draw arcs to intersect each other. 3. Mark the point as F. 4. Join BF So, BF is the bisector of the ∠ B Similarly, find Angle bisector of ∠ C CI is the angle bisector of ∠ C Mark point O as intersection of BF and CI Thus, point O is the incenter of Δ ABC Point O is the required point
Important Triangle Questions
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo