Slide24.JPG

Slide25.JPG
Slide26.JPG Slide27.JPG Slide28.JPG

  1. Chapter 12 Class 8 Exponents and Powers
  2. Serial order wise

Transcript

Ex 12.1, 7 Simplify. (i) (25 ร— ๐‘ก^(โˆ’4))/(5^(โˆ’3 ) ร— 10 ร— ๐‘ก^(โˆ’8) ) (t โ‰ 0) (25 ร— ๐‘ก^(โˆ’4))/(5^(โˆ’3 ) ร— 10 ร— ๐‘ก^(โˆ’8) ) = 25/(5^(โˆ’3 )ร— 10) ร— ๐‘ก^(โˆ’4)/๐‘ก^(โˆ’8) = 25/(5^(โˆ’3 )ร— 10) ร— ๐‘ก^(โˆ’4)ร—1/๐‘ก^(โˆ’8) = 25/(5^(โˆ’3 )ร— 10) ร— 1/๐‘ก^4 ร— ๐‘ก^8/1 = 25/(5^(โˆ’3 )ร— 10) ร— ๐‘ก^8/๐‘ก^4 = 25/(5^(โˆ’3 )ร— 10) ร— ๐‘ก^(8 โˆ’ 4) = 25/(5^(โˆ’3 )ร— 10) ร— ๐‘ก^4 = 25/((1/5^3 ) ร— 10) ร— ๐‘ก^4 = (25 ร— 5^3)/10 ร— ๐‘ก^4 = (25 ร— 5 ร— 5 ร— 5)/10 ร— ๐‘ก^4 = (25 ร— 5 ร— 5)/2 ร— ๐‘ก^4 = ๐Ÿ”๐Ÿ๐Ÿ“/๐Ÿ ๐’•^๐Ÿ’ (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘Ž^๐‘š/๐‘^๐‘› =๐‘Ž^(๐‘š โˆ’ ๐‘›) ) Ex 12.1, 7 Simplify. (ii) (3^(โˆ’5 ) ร— ใ€–10ใ€—^(โˆ’5 ) ร— 125)/(5^(โˆ’7 ) ร— 6^(โˆ’5) ) (3^(โˆ’5 )ร— ใ€–10ใ€—^(โˆ’5 ) ร— 125)/(5^(โˆ’7 ) ร— 6^(โˆ’5) ) = 3^(โˆ’5)ร—ใ€–10ใ€—^(โˆ’5)ร—125ร— 1/5^(โˆ’7) ร—1/6^(โˆ’5) = 1/3^(5 ) ร—1/ใ€–10ใ€—^5 ร—125ร—5^7ร—6^5 = 6^5/3^5 ร—1/ใ€–10ใ€—^5 ร—125ร—5^7 = (6/3)^5ร—1/ใ€–10ใ€—^5 ร—125ร—5^7 = (2)^5ร—1/ใ€–10ใ€—^5 ร—125ร—5^7 = 2^5ร—1/ใ€–10ใ€—^5 ร—5^3ร—5^7 = 2^5ร—1/ใ€–10ใ€—^5 ร—5^(3 + 7) = 2^5ร—1/ใ€–10ใ€—^5 ร—5^10 = (2/10)^5ร—5^10 = (1/5)^5ร—5^10 = 1^5/5^5 ร—5^10 (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘Ž^๐‘š/๐‘^๐‘š =(๐‘Ž/๐‘)^๐‘š ) (As 125 = 5 ร— 5 ร— 5 = 53) (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘Ž^๐‘šร—๐‘Ž^๐‘›=(๐‘Ž)^(๐‘š + ๐‘›) ) (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘Ž^๐‘š/๐‘^๐‘š =(๐‘Ž/๐‘)^๐‘š ) = 1/5^5 ร—5^10 = 5^10/5^5 = 5^(10 โˆ’ 5) = ๐Ÿ“^๐Ÿ“ (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘Ž^๐‘š/๐‘Ž^๐‘› =๐‘Ž^(๐‘š โˆ’ ๐‘›) )

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.