Suppose we have two numbers

  59760000 & 528000000

 

How do we compare them?

Comparing them becomes difficult when the number are large.

 

So, we write both number in standard form

14.jpg

So, our two numbers are

  5.976 × 10 7

  5.28 × 10 8

        Higher Power

 

So,

  5.28 × 10 8 > 5.976 × 10 7

 

Here,

  Standard form is

15.jpg

So, in standard form

  • We write number as power of 10
  • There is only 1 digit before decimal point

Let’s take some more examples

 

28488 in standard form

  28488

= 2.8488 × 10 4

 

8680 in standard form

8680 = 868 × 10 1

= 8.68 × 10 2 × 10 1

Usinga m × a n = a m + n

= 8.68 × 10 2 + 1

= 8.68 × 10 3

 

92058 in standard form

  92058  

  = 9.2058 × 10 4

 

35.89 in standard form

  35.89  

    = 3589/100

    = 3589 × 1/100

    = 3589 × 1/10 2

    = (3.589 × 10 3 ) × 1/10 2

    = 3.589 × 10 3 /10 2

    = 3.589 × 10 3 - 2

    = 3.589 × 10 1      (Using  a m /a n  =  a m - n )

 

Write 2.008 in standard form

  2.008 

       = 2.008 × 10 0

 

Write 0.00008 in standard form

  0.00008 

    = 8/100000

    = 8/10 5

    = 8 × 10 -5

 

Write 0.0092 in standard form

  0.0092  

       = 92/10000

       = 92 × 1/10000

       = 9.2 × 10 × 1/10000

       = 9.2 × 1/1000

       = 9.2 × 1/10 3

       = 9.2 × 10 -3

  1. Chapter 13 Class 7 Exponents and Powers
  2. Concept wise

Transcript

59760000 = 5976 × 〖10〗^4 = (5.976 × 〖10〗^3) × 〖10〗^4 = 5.976 × 〖10〗^3 × 〖10〗^4 Using 𝑎^𝑚 × 𝑎^𝑛 = 𝑎^(𝑚 + 𝑛) = 5.976 × 〖10〗^(3 + 4) = 5.976 × 〖10〗^7 528000000 = 528 × 〖10〗^6 = (5.28 × 〖10〗^2) × 〖10〗^6 = 5.28 × 〖10〗^2 × 〖10〗^6 Using 𝑎^𝑚 × 𝑎^𝑛 = 𝑎^(𝑚 + 𝑛) = 5.28 × 〖10〗^(2 + 6) = 5.28 × 〖10〗^8

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.