# Ex 14.3, 2 - Chapter 14 Class 11 Mathematical Reasoning

Last updated at May 29, 2018 by Teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Ex 14.3, 2 Identify the quantifier in the following statements and write the negation of the statements. (i) There exists a number which is equal to its square. The quantifier is “There exists”. Negation of statement is There does not exist a number which is equal to square. Ex14.3, 2 Identify the quantifier in the following statements and write the negation of the statements. (ii) For every real number x, x is less than x + 1. Quantifier is “For every” Negation of statement is There exists a real number x such that x is not less then x + 1 Ex14.3, 2 Identify the quantifier in the following statements and write the negation of the statements. (iii) There exists a capital for every state in India. Quantifier is “There exists”. Negation of statement is There does not exist a capital for every state in India.

Chapter 14 Class 11 Mathematical Reasoning

Concept wise

- Statements
- Writing negation of statements
- Negation - Checking if true or not
- Finding Compound Statement
- Words 'And' & 'Or'
- Inclusive and exclusive or
- Quantifiers
- Contrapositive and converse
- If then
- If and only if
- Proving not true/false (by giving counter examples)
- Proving True - If and only if
- Proving True - By Contrapositive
- Proving True - By Contradiction
- Necessary and sufficient condition

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.