Last updated at March 9, 2017 by Teachoo

Transcript

Ex 13.2, 9 Find the derivative of (i) 2š„ ā 3ļ·®4ļ·Æ Let f(x) = 2š„ ā 3ļ·®4ļ·Æ fā(x) = š(2š„ ā 3ļ·®4ļ·Æ )ļ·®šš„ļ·Æ = 2 ā 0 = 2 ā“ fā(x) = 2 Ex 13.2, 9 Find the derivative of (ii) (5x3 + 3x ā 1) (x ā 1) Let f(x) = (5x3 + 3x ā 1) (x- 1) Let u = 5x3 + 3x ā 1 & v = x ā 1 ā“ f(x) = uv So, fā(x) = (uv)ā fā(x) = uāv + vāu Finding uā & vā u = 5x3 + 3x ā 1 uā = 5.3x3ā1 + 3.1.x1ā1 ā 0 = 15x2 + 3x0 = 15x2 + 3 v = x ā 1 vā = 1 .x1ā1 ā 0 = 1. x0 = 1 fā(x) = uāv + vāu = (15x2 + 3) (x ā 1) + (1) (5x3 + 3x ā 1) = 15x2 (x ā 1) + 3 (x ā 1) + 5x3 + 3x ā 1 = 15x3 ā 15x2 + 3x ā 3 + 5x3 + 3x ā 1 = 15x3 + 5x3 ā 15x2 + 3x + 3x ā 3 ā 1 = 20x3 ā 15x2 + 6x ā 4 Hence fā(x) = 20x3 ā 15x2 + 6x ā 4 Ex 13.2, 9 Find the derivative of (iii) xā3 (5 + 3x) Let f(x) = x ā 3 (5 + 3x) Let u = x ā 3 & v = 5 + 3x ā“ f(x) = uv So, fā(x) = (uv)ā fā(x) = uāv + vāu Finding uā & vā u = x ā 3 uā = ā 3x ā 3 ā 1 = ā 3x ā 4 v = 5 + 3x vā = 0 + 3 = 3 Now, fā(x) = (uv)ā = uāv + vāu = ā 3x ā 4 (5 + 3x) + 3 (x ā 3) = ā 15x ā 4 ā 9x ā 4+ 1 + 3x ā 3 = ā 15x ā 4 ā 6x ā 3 = ā15ļ·® š„ļ·®4ļ·Æļ·Æ ā 6ļ·® š„ļ·®3ļ·Æļ·Æ = ā3ļ·® š„ļ·®4ļ·Æļ·Æ (5 + 2x) Hence fā(x) = āšļ·® šļ·®šļ·Æļ·Æ (5 + 2x) Ex 13.2,9 Find the derivative of (iv) x5 (3 ā 6xā9 ). Let f (x) = x5 (3 ā 6xā9 ) Let u = x5 & v = 3 ā 6x ā 9 So, f(x) = uv ā“ fā (x) = (uv)ā fā (x) = uāv + vā u Finding uā & vā u = x5 uā = 5x5 ā 1 = 5x4 v = 3 ā 6xā9 vā = 0 ā 6( ā 9)x ā 9 ā 1 vā = 54x ā10 Now, fā(x) = (uv)ā = uāv + vā u = 5x4 (3 ā 6x ā 9) + 54x ā 10) (x5) = 15x4 ā 30x ā 9 + 4 + 54 ā 10 + 5 = 15x4 ā 30x ā5 + 54x ā 5 = 15x4 + 24x ā 5 = 15x4 + 24ļ·® š„ļ·®5ļ·Æļ·Æ Hence fā(x) = 15x4 + ššļ·® šļ·®šļ·Æļ·Æ Ex 13.2, 9 Find the derivative of (v) f (x) = xā4 (3 ā 4xā5) Let f(x) = x ā 4 (3 ā 4x ā 5) Let u = x ā 4 & v = 3 ā 4x ā 5 ā“ f(x) = uv So, fā(x) = (uv)ā fā(x) = uāv + vāu Finding uā & vā u = x ā 4 uā = ā 4x ā 4 ā 1 = ā 4x ā 5 v = 3 ā 4x ā 5 vā = 0 ā 4 ( ā 5) x ā 5 ā 1 = 20x ā 6 Now, fā(x) = (uv)ā = uāv + vāu = (ā 4xā5 ) (3 ā 4xā5) + (20xā6) (xā4) = ā 12xā5 + 16x ā5 ā 5 + 20 ā6 ā 4 = ā 12x ā5 + 16x ā10 + 20x ā 10 = ā 12x ā5 + 36x ā 10 = ā12ļ·® š„ļ·®5ļ·Æļ·Æ + 36ļ·® š„ļ·®10ļ·Æļ·Æ Hence fā(x) = āššļ·® šļ·®šļ·Æļ·Æ + ššļ·® šļ·®ššļ·Æļ·Æ Ex 13.2, 9 Find the derivative of (vi) f(x) = 2ļ·®x + 1ļ·Æ ā x2ļ·®3x ā 1ļ·Æ Let f (x) = 2ļ·®x + 1ļ·Æ ā x2ļ·®3x ā 1ļ·Æ Let f1 (x) = 2ļ·®x + 1ļ·Æ & f2 (x) = x2ļ·®3x ā 1ļ·Æ ā“ f(x) = f1(x) ā f2 (x) So, fā(x) = (f1(x) ā f2(x))ā fā(x) = fā1(x) ā fā2(x) Finding f1ā(x) f1 (x) = 2ļ·®š„ + 1ļ·Æ Let u = 2 & v = x + 1 ā“ f1(x) = š¢ļ·®š£ļ·Æ Now, f1ā(x) = š¢ļ·®š£ļ·Æļ·Æļ·®ā²ļ·Æ f1ā(x) = š¢ļ·®ā²ļ·Æ š£ ā š£ļ·®ā²ļ·Æ š¢ļ·® š£ļ·®2ļ·Æļ·Æ u = 2 uā = 0 v = x + 1 vā = 1 + 0 = 1 fā1(x) = š¢ļ·®š£ļ·Æļ·Æļ·®ā²ļ·Æ = š¢ļ·®ā²ļ·Æ š£ ā š£ļ·®ā²ļ·Æ š¢ļ·® š£ļ·®2ļ·Æļ·Æ = 0 š„ + 1ļ·Æ ā1 (2)ļ·® š„ + 1ļ·Æ2ļ·Æ = ā2ļ·® (š„ + 1)ļ·®2ļ·Æļ·Æ Hence, f1ā (x) = ā2ļ·® š„ + 1ļ·Æ2ļ·Æ Finding f2ā(x) f2 (x) = š„2ļ·®3š„ ā 1ļ·Æ Let u = x2 & v = 3x ā 1 ā“ f2 (x) = š¢ļ·®š£ļ·Æ Now, f2ā(x) = š¢ļ·®š£ļ·Æļ·Æļ·®ā²ļ·Æ f2ā(x) = š¢ļ·®ā²ļ·Æ š£ ā š£ļ·®ā²ļ·Æ š¢ļ·® š£ļ·®2ļ·Æļ·Æ Finding uā & vā u = x2 uā = 2x2 ā 1 = 2x & v = 3x ā 1 vā = 3(1) ā 0 = 3 fā2(x) = š¢ļ·®š£ļ·Æļ·Æļ·®ā²ļ·Æ = š¢ļ·®ā²ļ·Æ š£ ā š£ļ·®ā²ļ·Æ š¢ļ·® š£ļ·®2ļ·Æļ·Æ = 2š„ 3š„ ā 1ļ·Æ ā 3 (š„2)ļ·® 3š„ ā 1ļ·Æ2ļ·Æ = 6š„2 ā 2š„ ā 3š„2ļ·® (3š„ ā 1)ļ·®2ļ·Æļ·Æ = 3š„2 ā 2š„ ļ·® (3š„ ā 1)ļ·®2ļ·Æļ·Æ = š„(3š„ ā 2)ļ·® (3š„ ā 1)ļ·®2ļ·Æļ·Æ Hence fā2(x) = š„ (3š„ ā 2)ļ·® 3š„ + 1ļ·Æ2ļ·Æ Now fā (x) = f1ā(x) ā f2ā (x) = āšļ·® š + šļ·Æšļ·Æ ā š(šš ā š)ļ·®(šš ā š)ļ·Æ

Example 2
Important

Example 3 Important

Ex 13.1, 6 Important

Ex 13.1,10 Important

Ex 13.1, 13 Important

Ex 13.1, 16 Important

Ex 13.1, 22 Important

Ex 13.1, 25 Important

Ex 13.1, 28 Important

Ex 13.1, 30 Important

Ex 13.1, 32 Important

Ex 13.2, 9 Important You are here

Ex 13.2, 11 Important

Example 20 Important

Example 21 Important

Example 22 Important

Misc 1 Important

Misc 6 Important

Misc 9 Important

Misc 24 Important

Misc 27 Important

Misc 28 Important

Misc 30 Important

Important Question for exams Class 11

- Chapter 1 Class 11 Sets
- Chapter 2 Class 11 Relations and Functions
- Chapter 3 Class 11 Trigonometric Functions
- Chapter 4 Class 11 Mathematical Induction
- Chapter 5 Class 11 Complex Numbers
- Chapter 6 Class 11 Linear Inequalities
- Chapter 7 Class 11 Permutations and Combinations
- Chapter 8 Class 11 Binomial Theorem
- Chapter 9 Class 11 Sequences and Series
- Chapter 10 Class 11 Straight Lines
- Chapter 11 Class 11 Conic Sections
- Chapter 12 Class 11 Introduction to Three Dimensional Geometry
- Chapter 13 Class 11 Limits and Derivatives
- Chapter 14 Class 11 Mathematical Reasoning
- Chapter 15 Class 11 Statistics
- Chapter 16 Class 11 Probability

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.