Check sibling questions

Ex 9.1, 14 - The Fibonacci sequence is 1 = a1 = a2 - Finding Sequences

Ex 9.1, 14 - Chapter 9 Class 11 Sequences and Series - Part 2
Ex 9.1, 14 - Chapter 9 Class 11 Sequences and Series - Part 3 Ex 9.1, 14 - Chapter 9 Class 11 Sequences and Series - Part 4

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex9.1 , 14 The Fibonacci sequence is defined by 1 = a1 = a2 and an = an–1+an–2,n > 2 . Find π‘Ž_(𝑛+1)/an, for n = 1,2,3,4,5, Lets first calculate a1 , a2 , a3 , a4 , a5 & a6 It is given that a1 = 1 a2 = 1 For a3 , a4 , a5 & a6 we need to use an = an–1 + an–2 , n > 2 an = an-1 + an-2 , n > 2 Putting n = 3 in (1) a3 = a3 – 1 + a3 – 2 = a2 + a1 = 1 + 1 = 2 Putting n = 4 in (1) a4 = a4 – 1 + a4 – 2 a4 = a3 + a2 = 2 + 1 = 3 an = an-1 + an-2 , n > 2 Putting n = 5 in (1) a5 = a5 – 1 + a5 – 2 a5 = a4 + a3 = 3 + 2 = 5 Putting n = 6 in (1) a6 = a6 – 1 + a6 – 2 a6 = a5 + a4 = 5 + 3 = 8 Now, a1 = 1 , a2 = 1, a3 = 2 , a4 = 3 , a5 = 5 , a6 = 8

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.