


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Jan. 29, 2020 by Teachoo
Transcript
Ex 8.1, 14 (Method 1) By Binomial Theorem, Putting b = 3 and a = 1 in the above equation Prove that โ_(๐=0)^๐โใ3^๐ nCrใ โ_(๐=0)^๐โnCr ๐^(๐ โ ๐) ๐^๐ โ_(๐=0)^๐โnCr 1^(๐โ๐) 3^๐ Hence proved Ex 8.1, 14 (Method 2) โ Introduction For r = 0, 3^0 nC0 For r = 1, 3^1 nC1 For r = 2, 3^2 nC2 For r = 3, 3^3 nC3 โฆ โฆ. For r = n, 3^๐ nCn nC0 30 + nC1 31 + nC2 32 + โฆ โฆโฆโฆ + nCn โ 1 3n โ 1 + nCn 3n Prove that = nC0 30 + nC1 31 + nC2 32 + โฆโฆโฆโฆโฆโฆ + nCn-1 3n-1 + nCn 3n Ex 8.1, 14(Method 2) Solving L.H.S This is similar to nC0 an b0 + nC1 an-1 b1 + nC2 an-2 b2 + โฆโฆ .+ nCn-1 a1 bn-1 + nCn a0 bn Where a = 1 , b = 3 And we know that (a + b)n = nC0 an b0 + nC1 an-1 b1 + โฆโฆ.+ nCn-1 a1 bn-1 + nCn a0 bn = (1 + 3)n = (4)n = R.H.S Hence proved
Ex 8.1
Ex 8.1,2 Important Not in Syllabus - CBSE Exams 2021
Ex 8.1,3 Not in Syllabus - CBSE Exams 2021
Ex 8.1,4 Important Not in Syllabus - CBSE Exams 2021
Ex 8.1, 5 Not in Syllabus - CBSE Exams 2021
Ex 8.1 6 Not in Syllabus - CBSE Exams 2021
Ex 8.1,7 Not in Syllabus - CBSE Exams 2021
Ex 8.1,8 Not in Syllabus - CBSE Exams 2021
Ex 8.1,9 Not in Syllabus - CBSE Exams 2021
Ex 8.1,10 Not in Syllabus - CBSE Exams 2021
Ex 8.1,11 Not in Syllabus - CBSE Exams 2021
Ex 8.1,12 Not in Syllabus - CBSE Exams 2021
Ex 8.1,13 Important Not in Syllabus - CBSE Exams 2021
Ex 8.1,14 Important Not in Syllabus - CBSE Exams 2021 You are here
About the Author