Last updated at May 29, 2018 by Teachoo

Transcript

Example, 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these four cards are of the same suit, There are four suits i.e. diamond, spade, heart, club & 13 card of each suit Since, they are different cases, So, we add the number of ways The required number of ways choosing four cards of the same suit = 13C4 + 13C4 + 13C4 + 13C4 = 4 × 13C4 = 4 × 13!/(4!(13 − 4)) = 4 × 13!/(4! 9!) = 4 × (13 × 12 × 11 × 10 × 9!)/(4! × 3 × 2 × 1 × 9!) = 4 × (13 × 12 × 11 × 10)/(4 × 3 × 2 × 1) = 2860 ways Example, 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (ii) four cards belong to four different suits, Since, they are the same case, So, we multiply the number of ways Hence the required no of ways choosing four cards from each suit = 13C1 × 13C1 × 13C1 × 13C1 = (13C1)4 = (13!/1!(13 − 1)!)^4 = (13!/1!12!)^4 = ((13 × 12!)/12!)^4 = (13)4 = 13 × 13 × 13 × 13 = 28561 ways Example, 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (iii) are face cards, King Queen and Jack are face cards Number of face cards in One suit = 3 Total number of face cards = Number of face cards in 4 suits = 4 × 3 = 12 Hence, n = 12 Number of card to be selected = 4 So, r = 4 Required no of ways choosing face cards = 12C4 = 12!/4!(12 − 4)! = 12!/4!8! = (12 × 11 × 10 × 9 × 8!)/(4 × 3 × 2 × 1 × 8!) = (12 × 11 × 10 × 9 )/(4 × 3 × 2 × 1 ) = 495 ways Example, 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (iv) two are red cards and two are black cards, Since, they are the same case, So, we multiply the number of ways Total no of ways choosing 2 red & 2 black cards = 26C2 × 26C2 = (26C2)2 = (26!/(2! (26 − 2)!))^2 = (26!/(2! 24!))^2 = ((26 × 25 × 24!)/(2 × 1 × 24!))^2 = ((26 × 25)/(2 × 1))^2 = (13 × 25)2 = (325)2 = 105625 Example, 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (v) cards are of the same color? Since, choosing red OR black , they are different cases, So, we add the number of ways Total number of ways selecting four cards of same colour = 26C4 + 26C4 = 2(26C4) = 2 × 26!/4!(26 − 4)! = 2 × 26!/(4! 22!) = 2 × (26×25×24×23×22!)/(4×3×2×1×22!) = 2 × (26×25×24×23)/(4×3×2×1) = 29900

Chapter 7 Class 11 Permutations and Combinations

Ex 7.1,6
Important

Ex 7.1,4 Important

Example 13 Important

Example 16 Important

Ex 7.3,3 Important

Ex 7.3,6 Important

Ex 7.3,10 Important

Example 19 Important You are here

Ex 7.4, 6 Important

Ex 7.4, 8 Important

Example 23 Important

Misc 3 Important

Misc 4 Important

misc 7 Important

Misc 10 Important

Misc 11 Important

Class 11

Important Question for exams Class 11

- Chapter 1 Class 11 Sets
- Chapter 2 Class 11 Relations and Functions
- Chapter 3 Class 11 Trigonometric Functions
- Chapter 4 Class 11 Mathematical Induction
- Chapter 5 Class 11 Complex Numbers
- Chapter 6 Class 11 Linear Inequalities
- Chapter 7 Class 11 Permutations and Combinations
- Chapter 8 Class 11 Binomial Theorem
- Chapter 9 Class 11 Sequences and Series
- Chapter 10 Class 11 Straight Lines
- Chapter 11 Class 11 Conic Sections
- Chapter 12 Class 11 Introduction to Three Dimensional Geometry
- Chapter 13 Class 11 Limits and Derivatives
- Chapter 14 Class 11 Mathematical Reasoning
- Chapter 15 Class 11 Statistics
- Chapter 16 Class 11 Probability

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.