Check sibling questions

Misc 8 - Show that A = (A ∩ B) U (A - B) and A U (B - A) = (A U B)

This video is only available for Teachoo black users

Misc 8 - Chapter 1 Class 11 Sets - Part 2

Misc 8 - Chapter 1 Class 11 Sets - Part 3
Misc 8 - Chapter 1 Class 11 Sets - Part 4

This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Transcript

Misc 8 Introduction Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B) Let U = {1, 2, 3, 4, 5} A = {1, 2} B = {2, 3, 4} A – B = A – (A ∩ B) = {1, 2} – {2} = {1} We use the result A – B = A ∩ B’ in this question Also, B’ = U – B = {1, 2, 3, 4, 5} – {2, 3, 4} = {1, 5} A – B = A ∩ B’ = {1, 2} ∩ {1, 5} = {1} Misc 8 Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B) To prove : A = (A ∩ B) ∪ (A – B) Solving R.H.S (A ∩ B) ∪ (A – B) Using A – B = A – (A ∩ B) = A ∩ B’ = (A ∩ B) ∪ (A ∩ B’) = A ∩ (B ∪ B’) ∪ Union - Combination of two sets ∩ Intersection - Common of two sets (Distributive law: A ∩ (B ∪ C)= (A ∩ B) ∪ (A ∩ C)) = A ∩ (U) = A = L.H.S Hence proved (As B ∪ B’ = U) (As A ∩ U = A ) To prove : A ∪ (B – A) = (A ∪ B) Taking L.H.S A ∪ (B – A) Using B – A = B – (A ∩ B) = B ∩ A’ = A ∪ (B ∩ A’) Using distributive law :A ∪ (B ∩ C)= (A ∪ B) ∩ (A ∪ C) = (A ∪ B) ∩ (A ∪ A’) = (A ∪ B) ∩ (U) = (A ∪ B) = R.H.S Hence proved (As A ∪ A’ = U )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.