Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Chapter 14 Class 10 Statistics

Serial order wise

Last updated at May 12, 2021 by Teachoo

Ex 14.3, 1 The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them. Finding Mode Mode = l + (ππ β ππ)/(πππ β ππ β ππ) Γ h Modal class = Interval with highest frequency = 125 β 145 where l = lower limit of modal class h = class-interval f1 = frequency of the modal class f0 = frequency of class before modal class f2 = frequency of class after modal class Putting values in formula Mode = l + (π1 βπ0)/(2π1 βπ0 βπ2) Γ h = 125 + (20 β 13)/(2(20) β 13 β 14) Γ 20 = 125 + 7/(40 β 27) Γ 20 = 125 + 7/13 Γ 20 = 125 + 10.77 = 135.77 Finding Median Median = l + (π/2 βππ)/π Γ h Here, π΅/π β΄ 125 β 145 is the median class And, l = lower limit of median class h = class-interval cf = cumulative frequency of the class before median class f = frequency of the median class Putting values in formula Median = l + (π/2 βππ)/π Γ h = 125 + (34 β 22)/20 Γ 20 = 125 + 12/20 Γ 20 = 125 + 12 = 137 Now, letβs find Mean Mean(π₯ Μ ) = a + h Γ (ββππππ)/(ββππ) Where a = assumed mean h = Class interval = 85 β 65 = 20 Also, ββππ = 68 ββππππ = 7 Putting values in formula Mean(π Μ ) = a + h Γ (ββππππ)/(ββππ) π₯ Μ = 135 + 20 Γ 7/68 π₯ Μ = 135 + 2.05 π Μ = 137.05 Therefore, Mean is 137.05 So, Mean = 137.05 , Median = 137, Mode = 135.77 β΄ Mean, Median, Mode are approximately the same