Check Important Questions and Chapter Summary -https://you.tube/Real-Numbers-Class-10

Last updated at May 29, 2018 by Teachoo

Transcript

Ex 1.1 , 2 Show that any positive odd integer is of the form 6q + 1, or 6q+ 3, or 6q+ 5, where q is some integer. As per Euclid’s Division Lemma If a and b are 2 positive integers, then a = bq + r where 0 ≤ r < b Let positive integer be a And b = 6 Hence a = 6q + r where ( 0 ≤ r < 6) r is an integer greater than or equal to 0 and less than 6 hence r can be either 0 , 1 , 2 ,3 , 4 or 5 Therefore, any odd integer is of the form 6q + 1, 6q + 3 or 6q + 5 Hence proved

Euclid's Division Algorithm - Proving

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.