Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 15.1
Ex 15.1, 2 Important Deleted for CBSE Board 2023 Exams You are here
Ex 15.1, 3 Deleted for CBSE Board 2023 Exams
Ex 15.1, 4 Deleted for CBSE Board 2023 Exams
Ex 15.1, 5 Important Deleted for CBSE Board 2023 Exams
Ex 15.1, 6 Important Deleted for CBSE Board 2023 Exams
Ex 15.1, 7 Deleted for CBSE Board 2023 Exams
Ex 15.1, 8 Important Deleted for CBSE Board 2023 Exams
Ex 15.1, 9 Deleted for CBSE Board 2023 Exams
Ex 15.1, 10 Deleted for CBSE Board 2023 Exams
Ex 15.1, 11 Important Deleted for CBSE Board 2023 Exams
Ex 15.1, 12 Important Deleted for CBSE Board 2023 Exams
Ex 15.1, 13 Deleted for CBSE Board 2023 Exams
Last updated at March 22, 2023 by Teachoo
Ex 15.1, 2 1500 families with 2 children were selected randomly, and the following data were recorded: Compute the probability of a family, chosen at random, having 2 girls Total number of families = 475 + 814 + 211 = 1500 Number of families having 2 girls = 475 P (a randomly chosen family has 2 girls) = 475/1500 = 19/60 Ex 15.1, 2 Compute the probability of a family, chosen at random, having (ii) 1 girl Total number of families = 1500 Number of families having 1 girl = 814 P (a randomly chosen family has 1 girl) = 814/1500 = 407/750 Ex 15.1, 2 Compute the probability of a family, chosen at random, having (iii) No girl Total number of families = 1500 Number of families having no girl = 211 P (a randomly chosen family has no girl) = 211/1500 Ex 15.1, 2 Also check whether the sum of these probabilities is 1. Sum of all these probabilities = 19/60 + 407/750 + 211/1500 = 475/1500 + 814/1500 + 211/1500 = 1500/1500 = 1 Hence, sum of probabilities is 1