Learn all Concepts of Polynomials Class 9 (with VIDEOS). Check - Polynomials Class 9

Slide23.JPG

Slide24.JPG
Slide25.JPG Slide26.JPG Slide27.JPG Slide28.JPG Slide29.JPG

  1. Chapter 2 Class 9 Polynomials
  2. Concept wise

Transcript

If ๐‘(๐‘ฅ) = ๐‘ฅ^2โˆ’2โˆš2 ๐‘ฅ+1, then ๐‘(2 โˆš2) is equal to (a) 0 (b) 1 (c) 4โˆš2 (d) 8โˆš2 + 1Given ๐‘(๐‘ฅ)" = " ๐‘ฅ^2โˆ’2โˆš2 ๐‘ฅ+1 Putting ๐’™=๐Ÿโˆš๐Ÿ ๐‘(2 โˆš2) = (2 โˆš2)^2โˆ’(2โˆš2)(2โˆš2)+1 = 8 โ€“ 8 + 1 = 1 Find p(0), p(1) and p(โˆ’2) for the following polynomials (i) p(x) = 10x โˆ’ 4x2 โˆ’ 3 (ii) p(y) = (y + 2)(y โˆ’ 2)For p(x) = 10x โˆ’ 4x2 โˆ’ 3 p(0) = โˆ’3 p(1) = 3 p(โˆ’2) = โˆ’39 For p(y) = (y + 2) (y โˆ’ 2) p(0) = โˆ’4 p(1) = โˆ’3 p(โˆ’2) = 0 Zero of a Zero Polynomial is (a) 0 (b) 1 (c) Any real number (d) Not DefinedOne of the zeros of polynomial 2x2 โ€“ 7x โˆ’ 4 is (a) 2 (b) 1/2 (c) (โˆ’1)/2 (d) โˆ’2Show that x = 1 is a root of polynomial 2x3 โˆ’ 3x2 + 7x โˆ’ 6 Let p(x) = 2x3 โˆ’ 3x2 + 7x โˆ’ 6 For x = 1 p(1) = 2(1)3 โˆ’ 3(1)2 + 7(1) โˆ’ 6 = 2 โˆ’ 3 + 7 โˆ’ 6 = 0 Since p(1) = 0 โˆด x = 1 is a root of p(x) Find zeros of polynomial in each of the following (i) p(x) = x โˆ’ 4 (ii) g(x) = 3 โˆ’ 6x (iii) q(x) = 2x โˆ’ 7 (iv) h(y) = 2yVerify whether true or false (i) โˆ’3 is a zero of x โˆ’ 3 (ii) (โˆ’1)/3 is a zero of 3x + 1 (iii) (โˆ’4)/5 is a zero of 4 โˆ’ 5y (iv) 0 and 2 are zeros of t2 โˆ’ 2t (v) โˆ’3 is a zero of y2 + y โˆ’ 6

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.