Check sibling questions

For general solutions

We must learn

 

For sin x = sin y,

  x = nπ + (–1) n y, where n ∈ Z

 

For cos x = cos y ,

  x = 2nπ ± y, where n ∈ Z

 

For tan x = tan y,

  x = nπ + y, where n ∈ Z

 

Note : Here n ∈ Z   means n is an integer


Transcript

For general solutions We must learn For sin x = sin y, x = nπ + (–1)n y, where n ∈ Z For cos x = cos y, x = 2nπ ± y, where n ∈ Z For tan x = tan y, x = nπ + y, where n ∈ Z Note: Here n ∈ Z means n is an integer

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Concept wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo