Last updated at Dec. 16, 2024 by Teachoo
Ex 8.1, 2 Find the area of the region bounded by the ellipse ๐ฅ^2/4+๐ฆ^2/9=1Given Equation of Ellipse ๐ฅ^2/4+๐ฆ^2/9=1 ๐^๐/(๐)^๐ +๐^๐/(๐)^๐ =๐ Area of Ellipse = Area of ABCD = 2 ร [Area of BCD] = 2 ร โซ_(โ๐)^๐โใ๐ ๐ ๐ใ We know that ๐ฅ^2/4+๐ฆ^2/9=1 ๐ฆ^2/9=1โ๐ฅ^2/4 ๐ฆ^2/9=(4 โ ๐ฅ^2)/4 ๐ฆ^2=9/4 (4โ๐ฅ^2 ) Taking Square Root on Both Sides ๐ฆ="ยฑ" โ(9/4 (4โ๐ฅ^2 ) ) ๐ ="ยฑ" ๐/๐ โ(๐โ๐^๐ ) Since Area BCD is above the x-axis, The value of y will be positive โด ๐=๐/๐ โ(๐โ๐^๐ ) Now, Area of Ellipse = 2 ร โซ_(โ2)^2โใ๐ฆ ๐๐ฅใ = 2 ร โซ_(โ2)^2โใ3/2 โ(4โ๐ฅ^2 ) ๐๐ฅใ = 3 โซ_(โ๐)^๐โใโ((๐)^๐โ๐^๐ ) ๐ ๐ใ It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=๐ฅ/2 โ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1)โกใ ๐ฅ/๐+๐ใ Replacing a by 2 we get = 3 [๐ฅ/2 โ((2)^2โ๐ฅ^2 )+(2)^2/2 sin^(โ1)โกใ๐ฅ/2ใ ]_(โ2)^2 = 3 [๐ฅ/2 โ(4โ๐ฅ^2 )+2 sin^(โ1)โกใ๐ฅ/2ใ ]_(โ2)^2 = 3[(2/2 โ(4โ2^2 )+2 sin^(โ1)โกใ2/2ใ )โ((โ2)/2 โ(4โใ(โ2)ใ^2 )+2 sin^(โ1)โกใ(โ2)/2ใ )] = 3[(0+2 sin^(โ1)โก1 )โ(0+2 sin^(โ1)โกใ(โ1)ใ )] = 3[2 sin^(โ1)โก1โ2 ใ๐๐๐ใ^(โ๐)โกใ(โ๐)ใ ] = 3[2 sin^(โ1)โก1โ2รโใ๐๐๐ใ^(โ๐)โก๐ ] = 3[2 ใ๐ ๐๐ใ^(โ1)โก1+2 ใ๐ ๐๐ใ^(โ1)โก1 ] = 3 [4 ใ๐๐๐ใ^(โ๐)โก(๐) ] = 3 ร 4 ร ๐ /๐ = 6ฯ โด Area of Ellipse = 6ฯ square units
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo