Ex 10.4, 12 - Chapter 10 Class 11 Conic Sections
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 10.4, 12 Find the equation of the hyperbola satisfying the given conditions: Foci (± 3√5, 0) , the latus rectum is of length 8. Co-ordinates of Foci is (±3√5, 0) Since foci is on the x-axis Hence equation of hyperbola is of the form 𝑥2/𝑎2 – 𝑦2/𝑏2 = 1 . Also, We know that co-ordinates of foci are (±c, 0) So, (±3√5, 0) = (±c, 0) 3√5 = c c = 3√𝟓 Now, c2 = a2 + b2 Putting c = 3√5 a2 + b2 = (3√5)2 a2 + b2 = 3 × 3 × √5 × √5 a2 + b2 = 9 × 5 a2 + b2 = 45 Also, it is given that Latus Rectum = 8 (2𝑏^2)/𝑎 = 8 2b2 = 8a b2 = 8𝑎/2 b2 = 4a Now, our equations are a2 + b2 = 45 b2 = 4a Putting the value of b2 in (1) a2 + b2 = 45 a2 + 4a = 45 a2 + 4a − 45 = 0 a2 + 9a − 5a − 45 = 0 a(a + 9) − 5(a + 9) = 0 (a + 9) (a − 5) = 0 So, a = 5 or a = −9 Since a is distance, it can’t be negative So a = 5 From (2) b2 = 4a b2 = 4 × 5 b2 = 20 Equation of hyperbola is 𝑥^2/𝑎^2 − 𝑦^2/𝑏^2 = 1 Putting values 𝑥^2/5^2 − 𝑦^2/20 = 1 𝒙^𝟐/𝟐𝟓 − 𝒚^𝟐/𝟐𝟎 = 1
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo