Check sibling questions


Transcript

Ex 9.2 , 15 If (๐‘Ž^๐‘› + ๐‘^๐‘›)/(๐‘Ž^(๐‘›โˆ’1) + ๐‘^(๐‘›โˆ’1) ) is the A.M. between a and b, then find the value of n. We know that arithmetic mean between a & b is A.M. = (a + b)/2 It is given that AM between a & b is (๐‘Ž^๐‘› + ๐‘^๐‘›)/(๐‘Ž^(๐‘›โˆ’1) + ๐‘^(๐‘›โˆ’1) ) So, (๐‘Ž^๐‘› + ๐‘^๐‘›)/(๐‘Ž^(๐‘›โˆ’1) + ๐‘^(๐‘›โˆ’1) ) = (a + b)/2 2(an + bn) = (a + b) (an โ€“ 1 + bn โ€“ 1) 2an + 2bn = a(an โ€“ 1 + bn โ€“ 1) + b(an โ€“ 1 + bn โ€“ 1) 2an + 2bn = aan โ€“ 1 + abn โ€“ 1 + ban โ€“ 1 + bbn โ€“ 1 2an + 2bn = a1 . an โ€“ 1 + abn โ€“ 1 + ban โ€“ 1 + b1 . bn โ€“ 1 2an + 2bn = a1 + n โ€“ 1 + abn โ€“ 1 + ban โ€“ 1 + b1 + n โ€“ 1 2an + 2bn = a1 + n โ€“ 1 + abn โ€“ 1 + ban โ€“ 1 + b1 + n โ€“ 1 2an + 2bn = an + abn โ€“ 1 + ban โ€“ 1 + bn 2an + 2bn โ€“ an โ€“ abn โ€“ 1 โ€“ an โ€“ 1 b โ€“ bn = 0 2an โ€“ an + 2bn โ€“ bn - abn โ€“ 1 โ€“ an - 1 b = 0 an + bn โ€“ abn โ€“ 1 โ€“ an โ€“ 1 b = 0 an โ€“ an โ€“ 1 b + bn โ€“ a bn โ€“ 1 = 0 a.an โ€“ 1 โ€“ an โ€“ 1 b + b.bn โ€“ 1 โ€“ a bn โ€“ 1 = 0 an โ€“ 1 (a โ€“ b) โ€“ bn โ€“ 1 (a โ€“ b) = 0 (an โ€“ 1 โ€“ bn โ€“ 1)(a โ€“ b) = 0 โˆด an โ€“ 1 โ€“ bn โ€“ 1 = 0 Solving an โ€“ 1 = bn โ€“ 1 an โ€“ 1 = bn โ€“ 1 ๐‘Ž^(๐‘› โˆ’1)/(๐‘^(๐‘› โˆ’1) ) = 1 (๐‘Ž/๐‘)^(๐‘› โˆ’1) = 1 (๐‘Ž/๐‘)^(๐‘› โˆ’1) = (๐‘Ž/๐‘)^0 Comparing powers n โ€“ 1 = 0 n = 1 Hence n = 1

  1. Chapter 8 Class 11 Sequences and Series
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo