Last updated at Dec. 16, 2024 by Teachoo
Ex 9.2 , 15 If (๐^๐ + ๐^๐)/(๐^(๐โ1) + ๐^(๐โ1) ) is the A.M. between a and b, then find the value of n. We know that arithmetic mean between a & b is A.M. = (a + b)/2 It is given that AM between a & b is (๐^๐ + ๐^๐)/(๐^(๐โ1) + ๐^(๐โ1) ) So, (๐^๐ + ๐^๐)/(๐^(๐โ1) + ๐^(๐โ1) ) = (a + b)/2 2(an + bn) = (a + b) (an โ 1 + bn โ 1) 2an + 2bn = a(an โ 1 + bn โ 1) + b(an โ 1 + bn โ 1) 2an + 2bn = aan โ 1 + abn โ 1 + ban โ 1 + bbn โ 1 2an + 2bn = a1 . an โ 1 + abn โ 1 + ban โ 1 + b1 . bn โ 1 2an + 2bn = a1 + n โ 1 + abn โ 1 + ban โ 1 + b1 + n โ 1 2an + 2bn = a1 + n โ 1 + abn โ 1 + ban โ 1 + b1 + n โ 1 2an + 2bn = an + abn โ 1 + ban โ 1 + bn 2an + 2bn โ an โ abn โ 1 โ an โ 1 b โ bn = 0 2an โ an + 2bn โ bn - abn โ 1 โ an - 1 b = 0 an + bn โ abn โ 1 โ an โ 1 b = 0 an โ an โ 1 b + bn โ a bn โ 1 = 0 a.an โ 1 โ an โ 1 b + b.bn โ 1 โ a bn โ 1 = 0 an โ 1 (a โ b) โ bn โ 1 (a โ b) = 0 (an โ 1 โ bn โ 1)(a โ b) = 0 โด an โ 1 โ bn โ 1 = 0 Solving an โ 1 = bn โ 1 an โ 1 = bn โ 1 ๐^(๐ โ1)/(๐^(๐ โ1) ) = 1 (๐/๐)^(๐ โ1) = 1 (๐/๐)^(๐ โ1) = (๐/๐)^0 Comparing powers n โ 1 = 0 n = 1 Hence n = 1
Arithmetic Progression
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 Important
Question 15 Important You are here
Question 16 Important
Question 17
Question 18 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo