Last updated at Dec. 16, 2024 by Teachoo
Question13 If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m. Let a1, a2, … an be the given A.P Given, Sum of n terms = 3n2 + 5n Sn = 3n2 + 5n Putting n = 1 in (1) S1 = 3 × 12 + 5 × 1 = 3 × 1 + 5 × 1 = 3 + 5 = 8 Sum of first 1 terms = First term ∴ First term = a1 = S1 = 8 Sn = 3n2 + 5n …(1) Putting n = 2 in (1) S2 = 3 × 22 + 5 × 2 = 3 × 4 + 5 × 2 = 12 + 10 = 22 Sum of first two terms = First term + Second term S2 = a1 + a2 S2 – a1 = a2 a2 = S2 – a1 Putting a1 = 8 , S2 = 22 a2 = 22 – 8 = 14 Thus, a1 = 8 , a2 = 14 Common difference (d) = Second term – First term = a2 – a1 = 14 – 8 = 6 Now we have a = 8 , d = 6 We know that, an = a + (n – 1)d where an = nth term of A.P. n = number of terms a = first term , d = common difference Given that mth term = 164 Putting n = m in an mth term = am = a + (m – 1)d Putting a = 8, d= 6 & mth term = 164 164 = 8 + (m – 1)6 164 – 8 = (m – 1)6 156 = (m – 1)6 156/6 = m – 1 26 = m – 1 26 + 1 = m 27 = m m = 27 Hence, Value of m is 27
Arithmetic Progression
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13 You are here
Question 14 Important
Question 15 Important
Question 16 Important
Question 17
Question 18 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo