Question 9 - Arithmetic Progression - Chapter 8 Class 11 Sequences and Series
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.2 , 9 The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms. There are two AP with different first term and common difference For the first AP Let first term be = a Common difference = d Sum of n terms = Sn = /2 [2a + (n 1)d] & nth term = an = a + (n 1)d For the second AP Let first term be = A common difference = D Sum of n terms = Sn = /2 [2A + (n 1)D] & nth term = An = A + (n 1)D We need to find ratio of their 18th term i.e. (18 1 )/(18 2 ) = ( 18 1 )/( 18 2 ) = (a + (18 1)d)/(A + (18 1)D) = ( + 17 )/(A + 17D) is given that (Sum of n terms of first A )/(Sum of n terms of second A ) = (5n+4)/(9n+6) ( /2[2 +( 1) ])/(( )/2[2 +( 1) ]) = (5n+4)/(9n+6) ( [2 +( 1) ])/( [2 +( 1) ]) = (5n+4)/(9n+6) ( 2(a +(( 1)/2)d))/( 2(A +(( 1)/2)D) ) = (5n+4)/(9n+6) ( (a +(( 1)/2)d))/( (A +(( 1)/2)D) ) = (5n+4)/(9n+6) We have to find ( + 17 )/(A + 17D) Hence, ( 1)/2 = 17 n 1 = 17 2 n 1 = 34 n = 34 + 1 n = 35 Putting n = 35 in (1) ( (a +((35 1)/2)d))/( (A +((35 1)/2)D) ) " "= (5(35)+4)/(9(35)+6) ( (a +(34/2)d))/( (A +(34/2)D) )= (175 + 4)/(315 + 6) ([a + 17d])/( [A + 17D]) = 179/321 Therefore (18 1 )/(18 2 ) = 179/321 Hence the ratio of 18th term of 1st AP and 18th term of 2nd AP is 179 : 321
Arithmetic Progression
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important You are here
Question 10
Question 11 Important
Question 12
Question 13
Question 14 Important
Question 15 Important
Question 16 Important
Question 17
Question 18 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo